Cargando…

In Silico Integrated Analysis of Genomic, Transcriptomic, and Proteomic Data Reveals QTL-Specific Genes for Bacterial Canker Resistance in Tomato (Solanum lycopersicum L.)

Bacterial canker of tomato, caused by Clavibacter michiganensis subsp. michiganensis (Cmm), is a devasting disease that leads to significant yield losses. Although QTLs originating from three wild species (Solanum arcanum, S. habrochaites, and S. pimpinellifolium) were identified, none of the QTLs w...

Descripción completa

Detalles Bibliográficos
Autor principal: Celik, Ibrahim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955012/
https://www.ncbi.nlm.nih.gov/pubmed/36826035
http://dx.doi.org/10.3390/cimb45020090
_version_ 1784894251823267840
author Celik, Ibrahim
author_facet Celik, Ibrahim
author_sort Celik, Ibrahim
collection PubMed
description Bacterial canker of tomato, caused by Clavibacter michiganensis subsp. michiganensis (Cmm), is a devasting disease that leads to significant yield losses. Although QTLs originating from three wild species (Solanum arcanum, S. habrochaites, and S. pimpinellifolium) were identified, none of the QTLs was annotated for candidate gene identification. In the present study, a QTL-based physical map was constructed to reveal the meta-QTLs for Cmm resistance. As a result, seven major QTLs were mapped. Functional annotation of QTLs revealed 48 candidate genes. Additionally, experimentally validated Cmm resistance-related genes based on transcriptomic and proteomic studies were mapped in the genome and 25 genes were found to be located in the QTL regions. The present study is the first report to construct a physical map for Cmm resistance QTLs and identify QTL-specific candidate genes. The candidate genes identified in the present study are valuable targets for fine mapping and developing markers for marker-assisted selection in tomatoes for Cmm resistance breeding.
format Online
Article
Text
id pubmed-9955012
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99550122023-02-25 In Silico Integrated Analysis of Genomic, Transcriptomic, and Proteomic Data Reveals QTL-Specific Genes for Bacterial Canker Resistance in Tomato (Solanum lycopersicum L.) Celik, Ibrahim Curr Issues Mol Biol Article Bacterial canker of tomato, caused by Clavibacter michiganensis subsp. michiganensis (Cmm), is a devasting disease that leads to significant yield losses. Although QTLs originating from three wild species (Solanum arcanum, S. habrochaites, and S. pimpinellifolium) were identified, none of the QTLs was annotated for candidate gene identification. In the present study, a QTL-based physical map was constructed to reveal the meta-QTLs for Cmm resistance. As a result, seven major QTLs were mapped. Functional annotation of QTLs revealed 48 candidate genes. Additionally, experimentally validated Cmm resistance-related genes based on transcriptomic and proteomic studies were mapped in the genome and 25 genes were found to be located in the QTL regions. The present study is the first report to construct a physical map for Cmm resistance QTLs and identify QTL-specific candidate genes. The candidate genes identified in the present study are valuable targets for fine mapping and developing markers for marker-assisted selection in tomatoes for Cmm resistance breeding. MDPI 2023-02-06 /pmc/articles/PMC9955012/ /pubmed/36826035 http://dx.doi.org/10.3390/cimb45020090 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Celik, Ibrahim
In Silico Integrated Analysis of Genomic, Transcriptomic, and Proteomic Data Reveals QTL-Specific Genes for Bacterial Canker Resistance in Tomato (Solanum lycopersicum L.)
title In Silico Integrated Analysis of Genomic, Transcriptomic, and Proteomic Data Reveals QTL-Specific Genes for Bacterial Canker Resistance in Tomato (Solanum lycopersicum L.)
title_full In Silico Integrated Analysis of Genomic, Transcriptomic, and Proteomic Data Reveals QTL-Specific Genes for Bacterial Canker Resistance in Tomato (Solanum lycopersicum L.)
title_fullStr In Silico Integrated Analysis of Genomic, Transcriptomic, and Proteomic Data Reveals QTL-Specific Genes for Bacterial Canker Resistance in Tomato (Solanum lycopersicum L.)
title_full_unstemmed In Silico Integrated Analysis of Genomic, Transcriptomic, and Proteomic Data Reveals QTL-Specific Genes for Bacterial Canker Resistance in Tomato (Solanum lycopersicum L.)
title_short In Silico Integrated Analysis of Genomic, Transcriptomic, and Proteomic Data Reveals QTL-Specific Genes for Bacterial Canker Resistance in Tomato (Solanum lycopersicum L.)
title_sort in silico integrated analysis of genomic, transcriptomic, and proteomic data reveals qtl-specific genes for bacterial canker resistance in tomato (solanum lycopersicum l.)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955012/
https://www.ncbi.nlm.nih.gov/pubmed/36826035
http://dx.doi.org/10.3390/cimb45020090
work_keys_str_mv AT celikibrahim insilicointegratedanalysisofgenomictranscriptomicandproteomicdatarevealsqtlspecificgenesforbacterialcankerresistanceintomatosolanumlycopersicuml