Cargando…
Counterfactual Supervision-Based Information Bottleneck for Out-of-Distribution Generalization
Learning invariant (causal) features for out-of-distribution (OOD) generalization have attracted extensive attention recently, and among the proposals, invariant risk minimization (IRM) is a notable solution. In spite of its theoretical promise for linear regression, the challenges of using IRM in l...
Autores principales: | Deng, Bin, Jia, Kui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955031/ https://www.ncbi.nlm.nih.gov/pubmed/36832560 http://dx.doi.org/10.3390/e25020193 |
Ejemplares similares
-
Variational Information Bottleneck for Semi-Supervised Classification
por: Voloshynovskiy, Slava, et al.
Publicado: (2020) -
Out of the bottleneck
por: Charpak, Georges
Publicado: (2004) -
Information Bottleneck Classification in Extremely Distributed Systems
por: Ullmann, Denis, et al.
Publicado: (2020) -
On the Difference between the Information Bottleneck and the Deep Information Bottleneck
por: Wieczorek, Aleksander, et al.
Publicado: (2020) -
Counterfactual quantum key distribution with untrusted detectors
por: Lin, Ya-Qian, et al.
Publicado: (2023)