Cargando…
Machine Learning Models for Predicting Adverse Pregnancy Outcomes in Pregnant Women with Systemic Lupus Erythematosus
Predicting adverse outcomes is essential for pregnant women with systemic lupus erythematosus (SLE) to minimize risks. Applying statistical analysis may be limited for the small sample size of childbearing patients, while the informative medical records could be provided. This study aimed to develop...
Autores principales: | Hao, Xinyu, Zheng, Dongying, Khan, Muhanmmad, Wang, Lixia, Hämäläinen, Timo, Cong, Fengyu, Xu, Hongming, Song, Kedong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955045/ https://www.ncbi.nlm.nih.gov/pubmed/36832100 http://dx.doi.org/10.3390/diagnostics13040612 |
Ejemplares similares
-
Comparison of machine learning and logistic regression as predictive models for adverse maternal and neonatal outcomes of preeclampsia: A retrospective study
por: Zheng, Dongying, et al.
Publicado: (2022) -
Fetal outcomes and associated factors of adverse outcomes of pregnancy in southern Chinese women with systemic lupus erythematosus
por: Zhan, Zhongping, et al.
Publicado: (2017) -
Adverse pregnancy outcomes in women with systemic lupus erythematosus: can we improve predictions with machine learning?
por: Fazzari, Melissa J, et al.
Publicado: (2022) -
Prognosis of Neonates in Pregnant Women with Systemic Lupus Erythematosus
por: Kim, So-Young, et al.
Publicado: (2008) -
Quality of Life of Pregnant Women with Systemic Lupus Erythematosus
por: Rodrigues, Larissa, et al.
Publicado: (2022)