Cargando…
Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability †
A thermodynamically unstable spin glass growth model described by means of the parametrically-dependent Kardar–Parisi–Zhang equation is analyzed within the symplectic geometry-based gradient–holonomic and optimal control motivated algorithms. The finitely-parametric functional extensions of the mode...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955052/ https://www.ncbi.nlm.nih.gov/pubmed/36832674 http://dx.doi.org/10.3390/e25020308 |
Sumario: | A thermodynamically unstable spin glass growth model described by means of the parametrically-dependent Kardar–Parisi–Zhang equation is analyzed within the symplectic geometry-based gradient–holonomic and optimal control motivated algorithms. The finitely-parametric functional extensions of the model are studied, and the existence of conservation laws and the related Hamiltonian structure is stated. A relationship of the Kardar–Parisi–Zhang equation to a so called dark type class of integrable dynamical systems, on functional manifolds with hidden symmetries, is stated. |
---|