Cargando…

Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability †

A thermodynamically unstable spin glass growth model described by means of the parametrically-dependent Kardar–Parisi–Zhang equation is analyzed within the symplectic geometry-based gradient–holonomic and optimal control motivated algorithms. The finitely-parametric functional extensions of the mode...

Descripción completa

Detalles Bibliográficos
Autores principales: Prykarpatski, Anatolij K., Pukach, Petro Y., Vovk, Myroslava I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955052/
https://www.ncbi.nlm.nih.gov/pubmed/36832674
http://dx.doi.org/10.3390/e25020308
_version_ 1784894262046883840
author Prykarpatski, Anatolij K.
Pukach, Petro Y.
Vovk, Myroslava I.
author_facet Prykarpatski, Anatolij K.
Pukach, Petro Y.
Vovk, Myroslava I.
author_sort Prykarpatski, Anatolij K.
collection PubMed
description A thermodynamically unstable spin glass growth model described by means of the parametrically-dependent Kardar–Parisi–Zhang equation is analyzed within the symplectic geometry-based gradient–holonomic and optimal control motivated algorithms. The finitely-parametric functional extensions of the model are studied, and the existence of conservation laws and the related Hamiltonian structure is stated. A relationship of the Kardar–Parisi–Zhang equation to a so called dark type class of integrable dynamical systems, on functional manifolds with hidden symmetries, is stated.
format Online
Article
Text
id pubmed-9955052
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99550522023-02-25 Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability † Prykarpatski, Anatolij K. Pukach, Petro Y. Vovk, Myroslava I. Entropy (Basel) Article A thermodynamically unstable spin glass growth model described by means of the parametrically-dependent Kardar–Parisi–Zhang equation is analyzed within the symplectic geometry-based gradient–holonomic and optimal control motivated algorithms. The finitely-parametric functional extensions of the model are studied, and the existence of conservation laws and the related Hamiltonian structure is stated. A relationship of the Kardar–Parisi–Zhang equation to a so called dark type class of integrable dynamical systems, on functional manifolds with hidden symmetries, is stated. MDPI 2023-02-07 /pmc/articles/PMC9955052/ /pubmed/36832674 http://dx.doi.org/10.3390/e25020308 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Prykarpatski, Anatolij K.
Pukach, Petro Y.
Vovk, Myroslava I.
Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability †
title Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability †
title_full Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability †
title_fullStr Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability †
title_full_unstemmed Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability †
title_short Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability †
title_sort symplectic geometry aspects of the parametrically-dependent kardar–parisi–zhang equation of spin glasses theory, its integrability and related thermodynamic stability †
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955052/
https://www.ncbi.nlm.nih.gov/pubmed/36832674
http://dx.doi.org/10.3390/e25020308
work_keys_str_mv AT prykarpatskianatolijk symplecticgeometryaspectsoftheparametricallydependentkardarparisizhangequationofspinglassestheoryitsintegrabilityandrelatedthermodynamicstability
AT pukachpetroy symplecticgeometryaspectsoftheparametricallydependentkardarparisizhangequationofspinglassestheoryitsintegrabilityandrelatedthermodynamicstability
AT vovkmyroslavai symplecticgeometryaspectsoftheparametricallydependentkardarparisizhangequationofspinglassestheoryitsintegrabilityandrelatedthermodynamicstability