Cargando…
Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability †
A thermodynamically unstable spin glass growth model described by means of the parametrically-dependent Kardar–Parisi–Zhang equation is analyzed within the symplectic geometry-based gradient–holonomic and optimal control motivated algorithms. The finitely-parametric functional extensions of the mode...
Autores principales: | Prykarpatski, Anatolij K., Pukach, Petro Y., Vovk, Myroslava I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955052/ https://www.ncbi.nlm.nih.gov/pubmed/36832674 http://dx.doi.org/10.3390/e25020308 |
Ejemplares similares
-
Half-Space Stationary Kardar–Parisi–Zhang Equation
por: Barraquand, Guillaume, et al.
Publicado: (2020) -
Kardar–Parisi–Zhang roughening associated with nucleation-limited steady crystal growth
por: Akutsu, Noriko
Publicado: (2023) -
Symplectic geometry
por: Siegel, Carl Ludwig
Publicado: (1964) -
Symplectic geometry
por: Fomenko, A T
Publicado: (1995) -
Introduction to symplectic geometry
por: Koszul, Jean-Louis, et al.
Publicado: (2019)