Cargando…
Round-Efficient Secure Inference Based on Masked Secret Sharing for Quantized Neural Network
Existing secure multiparty computation protocol from secret sharing is usually under this assumption of the fast network, which limits the practicality of the scheme on the low bandwidth and high latency network. A proven method is to reduce the communication rounds of the protocol as much as possib...
Autores principales: | Wei, Weiming, Tang, Chunming, Chen, Yucheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955064/ https://www.ncbi.nlm.nih.gov/pubmed/36832755 http://dx.doi.org/10.3390/e25020389 |
Ejemplares similares
-
Efficient Privacy-Preserving K-Means Clustering from Secret-Sharing-Based Secure Three-Party Computation
por: Wei, Weiming, et al.
Publicado: (2022) -
Ps and Qs: Quantization-Aware Pruning for Efficient Low Latency Neural Network Inference
por: Hawks, Benjamin, et al.
Publicado: (2021) -
Deep Neural Network Quantization Framework for Effective Defense against Membership Inference Attacks
por: Famili, Azadeh, et al.
Publicado: (2023) -
How to Secure Valid Quantizations
por: Klauder, John R.
Publicado: (2022) -
Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors
por: Coelho, Claudionor N., et al.
Publicado: (2020)