Cargando…
Machine Learning Augmented Interpretation of Chest X-rays: A Systematic Review
Limitations of the chest X-ray (CXR) have resulted in attempts to create machine learning systems to assist clinicians and improve interpretation accuracy. An understanding of the capabilities and limitations of modern machine learning systems is necessary for clinicians as these tools begin to perm...
Autores principales: | Ahmad, Hassan K., Milne, Michael R., Buchlak, Quinlan D., Ektas, Nalan, Sanderson, Georgina, Chamtie, Hadi, Karunasena, Sajith, Chiang, Jason, Holt, Xavier, Tang, Cyril H. M., Seah, Jarrel C. Y., Bottrell, Georgina, Esmaili, Nazanin, Brotchie, Peter, Jones, Catherine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955112/ https://www.ncbi.nlm.nih.gov/pubmed/36832231 http://dx.doi.org/10.3390/diagnostics13040743 |
Ejemplares similares
-
Do comprehensive deep learning algorithms suffer from hidden stratification? A retrospective study on pneumothorax detection in chest radiography
por: Seah, Jarrel, et al.
Publicado: (2021) -
Chest radiographs and machine learning – Past, present and future
por: Jones, Catherine M, et al.
Publicado: (2021) -
Assessment of the effect of a comprehensive chest radiograph deep learning model on radiologist reports and patient outcomes: a real-world observational study
por: Jones, Catherine M, et al.
Publicado: (2021) -
Analysis of Line and Tube Detection Performance of a Chest X-ray Deep Learning Model to Evaluate Hidden Stratification
por: Tang, Cyril H. M., et al.
Publicado: (2023) -
Predictors of improvement in quality of life at 12-month follow-up in patients undergoing anterior endoscopic skull base surgery
por: Buchlak, Quinlan D., et al.
Publicado: (2022)