Cargando…
Rank-Adaptive Tensor Completion Based on Tucker Decomposition
Tensor completion is a fundamental tool to estimate unknown information from observed data, which is widely used in many areas, including image and video recovery, traffic data completion and the multi-input multi-output problems in information theory. Based on Tucker decomposition, this paper propo...
Autores principales: | Liu, Siqi, Shi, Xiaoyu, Liao, Qifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955114/ https://www.ncbi.nlm.nih.gov/pubmed/36832592 http://dx.doi.org/10.3390/e25020225 |
Ejemplares similares
-
Speckle Noise Filtering in Side-Scan Sonar Images Based on the Tucker Tensor Decomposition
por: Grabek, Jakub, et al.
Publicado: (2019) -
Magnetoencephalography for epileptic focus localization based on Tucker decomposition with ripple window
por: Shi, Li‐juan, et al.
Publicado: (2021) -
Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition With Spatial Sparsity Constraint
por: Han, Yue, et al.
Publicado: (2022) -
Nonconvex Nonlocal Tucker Decomposition for 3D Medical Image Super-Resolution
por: Jia, Huidi, et al.
Publicado: (2022) -
System-Specific Separable Basis Based on Tucker Decomposition:
Application to Density Functional Calculations
por: Woo, Jeheon, et al.
Publicado: (2022)