Cargando…
Robustness Fine-Tuning Deep Learning Model for Cancers Diagnosis Based on Histopathology Image Analysis
Histopathology is the most accurate way to diagnose cancer and identify prognostic and therapeutic targets. The likelihood of survival is significantly increased by early cancer detection. With deep networks’ enormous success, significant attempts have been made to analyze cancer disorders, particul...
Autores principales: | El-Ghany, Sameh Abd, Azad, Mohammad, Elmogy, Mohammed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955143/ https://www.ncbi.nlm.nih.gov/pubmed/36832186 http://dx.doi.org/10.3390/diagnostics13040699 |
Ejemplares similares
-
Multimodality Imaging of COVID-19 Using Fine-Tuned Deep Learning Models
por: Almuayqil, Saleh, et al.
Publicado: (2023) -
Computer-Aided Diagnosis System for Blood Diseases Using EfficientNet-B3 Based on a Dynamic Learning Algorithm
por: Abd El-Ghany, Sameh, et al.
Publicado: (2023) -
COVID-19 Diagnosis Using an Enhanced Inception-ResNetV2 Deep Learning Model in CXR Images
por: Alruwaili, Madallah, et al.
Publicado: (2021) -
Robust adversarial uncertainty quantification for deep learning fine-tuning
por: Ahmed, Usman, et al.
Publicado: (2023) -
No Fine-Tuning, No Cry: Robust SVD for Compressing Deep Networks
por: Tukan, Murad, et al.
Publicado: (2021)