Cargando…
IoT-Enabled Classification of Echocardiogram Images for Cardiovascular Disease Risk Prediction with Pre-Trained Recurrent Convolutional Neural Networks
Cardiovascular diseases currently present a key health concern, contributing to an increase in death rates worldwide. In this phase of increasing mortality rates, healthcare represents a major field of research, and the knowledge acquired from this analysis of health information will assist in the e...
Autores principales: | Balakrishnan, Chitra, Ambeth Kumar, V. D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955174/ https://www.ncbi.nlm.nih.gov/pubmed/36832263 http://dx.doi.org/10.3390/diagnostics13040775 |
Ejemplares similares
-
Convolutional neural networks for the classification of chest X-rays in the IoT era
por: Almezhghwi, Khaled, et al.
Publicado: (2021) -
Enabling Intelligent IoTs for Histopathology Image Analysis Using Convolutional Neural Networks
por: Alali, Mohammed H., et al.
Publicado: (2022) -
IoT enabled depthwise separable convolution neural network with deep support vector machine for COVID-19 diagnosis and classification
por: Le, Dac-Nhuong, et al.
Publicado: (2021) -
IoTNet: An Efficient and Accurate Convolutional Neural Network for IoT Devices
por: Lawrence, Tom, et al.
Publicado: (2019) -
Flamingo-Optimization-Based Deep Convolutional Neural Network for IoT-Based Arrhythmia Classification
por: Kumar, Ashwani, et al.
Publicado: (2023)