Cargando…
Prediction of Clinical Outcomes with Explainable Artificial Intelligence in Patients with Chronic Lymphocytic Leukemia
Background: The International Prognostic Index (IPI) is applied to predict the outcome of chronic lymphocytic leukemia (CLL) with five prognostic factors, including genetic analysis. We investigated whether multiparameter flow cytometry (MPFC) data of CLL samples could predict the outcome by methods...
Autores principales: | Hoffmann, Joerg, Eminovic, Semil, Wilhelm, Christian, Krause, Stefan W., Neubauer, Andreas, Thrun, Michael C., Ultsch, Alfred, Brendel, Cornelia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955184/ https://www.ncbi.nlm.nih.gov/pubmed/36826109 http://dx.doi.org/10.3390/curroncol30020148 |
Ejemplares similares
-
Flow cytometry datasets consisting of peripheral blood and bone marrow samples for the evaluation of explainable artificial intelligence methods
por: Thrun, Michael C., et al.
Publicado: (2022) -
A Bioinformatics View on Acute Myeloid Leukemia Surface Molecules by Combined Bayesian and ABC Analysis
por: Thrun, Michael C., et al.
Publicado: (2022) -
Uncovering High-dimensional Structures of Projections from Dimensionality Reduction Methods
por: Thrun, Michael C., et al.
Publicado: (2020) -
Clustering benchmark datasets exploiting the fundamental clustering problems
por: Thrun, Michael C., et al.
Publicado: (2020) -
Comprehensive genetic diagnosis of acute myeloid leukemia by next-generation sequencing
por: Mack, Elisabeth K.M., et al.
Publicado: (2019)