Cargando…
Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays
Deep learning (DL) models are state-of-the-art in segmenting anatomical and disease regions of interest (ROIs) in medical images. Particularly, a large number of DL-based techniques have been reported using chest X-rays (CXRs). However, these models are reportedly trained on reduced image resolution...
Autores principales: | Rajaraman, Sivaramakrishnan, Yang, Feng, Zamzmi, Ghada, Xue, Zhiyun, Antani, Sameer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955202/ https://www.ncbi.nlm.nih.gov/pubmed/36832235 http://dx.doi.org/10.3390/diagnostics13040747 |
Ejemplares similares
-
Uncertainty Quantification in Segmenting Tuberculosis-Consistent Findings in Frontal Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Semantically Redundant Training Data Removal and Deep Model Classification Performance: A Study with Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2023) -
A Systematic Evaluation of Ensemble Learning Methods for Fine-Grained Semantic Segmentation of Tuberculosis-Consistent Lesions in Chest Radiographs
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2021) -
Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022)