Cargando…
Unsupervised Embedding Learning for Large-Scale Heterogeneous Networks Based on Metapath Graph Sampling
How to learn the embedding vectors of nodes in unsupervised large-scale heterogeneous networks is a key problem in heterogeneous network embedding research. This paper proposes an unsupervised embedding learning model, named LHGI (Large-scale Heterogeneous Graph Infomax). LHGI adopts the subgraph sa...
Autores principales: | Zhong, Hongwei, Wang, Mingyang, Zhang, Xinyue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955212/ https://www.ncbi.nlm.nih.gov/pubmed/36832662 http://dx.doi.org/10.3390/e25020297 |
Ejemplares similares
-
Metapath Aggregated Graph Neural Network and Tripartite Heterogeneous Networks for Microbe-Disease Prediction
por: Chen, Yali, et al.
Publicado: (2022) -
Metapaths: similarity search in heterogeneous knowledge graphs via meta-paths
por: Noori, Ayush, et al.
Publicado: (2023) -
HMCDA: a novel method based on the heterogeneous graph neural network and metapath for circRNA-disease associations prediction
por: Liang, Shiyang, et al.
Publicado: (2023) -
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
por: Xie, Tian, et al.
Publicado: (2019) -
MetaPath Online: a web server implementation of the network expansion algorithm
por: Handorf, Thomas, et al.
Publicado: (2007)