Cargando…

Zinc-Mediated Allylation-Lactonization One-Pot Reaction to Methylene Butyrolactones: Renewable Monomers for Sustainable Acrylic Polymers with Closed-Loop Recyclability

[Image: see text] Despite biomass-derived methylene butyrolactone monomers having great potential in substituting the petroleum-based methacrylates for synthesizing the sustainable acrylic polymers, the possible industrial production of these cyclic monomers is unfortunately not practical due to mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhen-Hua, Wang, Xing, Weng, Biwei, Zhang, Yixin, Zhang, Guozhu, Hong, Miao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955236/
https://www.ncbi.nlm.nih.gov/pubmed/36855566
http://dx.doi.org/10.1021/acspolymersau.2c00001
Descripción
Sumario:[Image: see text] Despite biomass-derived methylene butyrolactone monomers having great potential in substituting the petroleum-based methacrylates for synthesizing the sustainable acrylic polymers, the possible industrial production of these cyclic monomers is unfortunately not practical due to moderate overall yields and harsh reaction conditions or a time-consuming multistep process. Here we report a convenient and effective synthetic approach to a series of biomass-derived methylene butyrolactone monomers via a zinc-mediated allylation-lactonization one-pot reaction of biorenewable aldehydes with ethyl 2-(bromomethyl)acrylate. Under simple room-temperature sonication conditions, near-quantitative conversions (>90%) can be accomplished within 5–30 min, providing pure products with high isolated yields of 70–80%. Their efficient polymerizations with a high degree of control and complete chemoselectivity were enabled by the judiciously chosen Lewis pair catalyst based on methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide) [MeAl(BHT)(2)] Lewis acid and 3-diisopropyl-4,5-dimethylimidazol-2-ylidene (I(i)Pr) Lewis base, affording new poly(methylene butyrolactone)s with high thermal stability and thermal properties tuned in a wide range as well as pendant vinyl groups for postfunctionalization. Through the development of an effective depolymerization setup (370–390 °C, ca. 100 mTorr, 1 h, a muffle furnace), thermal depolymerizations of these polymers have been achieved with monomer recovery up to 99.8%, thus successfully constructing sustainable acrylic polymers with closed-loop recyclability.