Cargando…
A Novel Proposal for Deep Learning-Based Diabetes Prediction: Converting Clinical Data to Image Data
Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes greatly inhibits the progression of the disease. This study proposes a new method based on deep learning for the early detection of diabetes....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955314/ https://www.ncbi.nlm.nih.gov/pubmed/36832284 http://dx.doi.org/10.3390/diagnostics13040796 |
_version_ | 1784894318334443520 |
---|---|
author | Aslan, Muhammet Fatih Sabanci, Kadir |
author_facet | Aslan, Muhammet Fatih Sabanci, Kadir |
author_sort | Aslan, Muhammet Fatih |
collection | PubMed |
description | Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes greatly inhibits the progression of the disease. This study proposes a new method based on deep learning for the early detection of diabetes. Like many other medical data, the PIMA dataset used in the study contains only numerical values. In this sense, the application of popular convolutional neural network (CNN) models to such data are limited. This study converts numerical data into images based on the feature importance to use the robust representation of CNN models in early diabetes diagnosis. Three different classification strategies are then applied to the resulting diabetes image data. In the first, diabetes images are fed into the ResNet18 and ResNet50 CNN models. In the second, deep features of the ResNet models are fused and classified with support vector machines (SVM). In the last approach, the selected fusion features are classified by SVM. The results demonstrate the robustness of diabetes images in the early diagnosis of diabetes. |
format | Online Article Text |
id | pubmed-9955314 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99553142023-02-25 A Novel Proposal for Deep Learning-Based Diabetes Prediction: Converting Clinical Data to Image Data Aslan, Muhammet Fatih Sabanci, Kadir Diagnostics (Basel) Article Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes greatly inhibits the progression of the disease. This study proposes a new method based on deep learning for the early detection of diabetes. Like many other medical data, the PIMA dataset used in the study contains only numerical values. In this sense, the application of popular convolutional neural network (CNN) models to such data are limited. This study converts numerical data into images based on the feature importance to use the robust representation of CNN models in early diabetes diagnosis. Three different classification strategies are then applied to the resulting diabetes image data. In the first, diabetes images are fed into the ResNet18 and ResNet50 CNN models. In the second, deep features of the ResNet models are fused and classified with support vector machines (SVM). In the last approach, the selected fusion features are classified by SVM. The results demonstrate the robustness of diabetes images in the early diagnosis of diabetes. MDPI 2023-02-20 /pmc/articles/PMC9955314/ /pubmed/36832284 http://dx.doi.org/10.3390/diagnostics13040796 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Aslan, Muhammet Fatih Sabanci, Kadir A Novel Proposal for Deep Learning-Based Diabetes Prediction: Converting Clinical Data to Image Data |
title | A Novel Proposal for Deep Learning-Based Diabetes Prediction: Converting Clinical Data to Image Data |
title_full | A Novel Proposal for Deep Learning-Based Diabetes Prediction: Converting Clinical Data to Image Data |
title_fullStr | A Novel Proposal for Deep Learning-Based Diabetes Prediction: Converting Clinical Data to Image Data |
title_full_unstemmed | A Novel Proposal for Deep Learning-Based Diabetes Prediction: Converting Clinical Data to Image Data |
title_short | A Novel Proposal for Deep Learning-Based Diabetes Prediction: Converting Clinical Data to Image Data |
title_sort | novel proposal for deep learning-based diabetes prediction: converting clinical data to image data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955314/ https://www.ncbi.nlm.nih.gov/pubmed/36832284 http://dx.doi.org/10.3390/diagnostics13040796 |
work_keys_str_mv | AT aslanmuhammetfatih anovelproposalfordeeplearningbaseddiabetespredictionconvertingclinicaldatatoimagedata AT sabancikadir anovelproposalfordeeplearningbaseddiabetespredictionconvertingclinicaldatatoimagedata AT aslanmuhammetfatih novelproposalfordeeplearningbaseddiabetespredictionconvertingclinicaldatatoimagedata AT sabancikadir novelproposalfordeeplearningbaseddiabetespredictionconvertingclinicaldatatoimagedata |