Cargando…
Auto-Detection of Motion Artifacts on CT Pulmonary Angiograms with a Physician-Trained AI Algorithm
Purpose: Motion-impaired CT images can result in limited or suboptimal diagnostic interpretation (with missed or miscalled lesions) and patient recall. We trained and tested an artificial intelligence (AI) model for identifying substantial motion artifacts on CT pulmonary angiography (CTPA) that hav...
Autores principales: | Dasegowda, Giridhar, Bizzo, Bernardo C., Kaviani, Parisa, Karout, Lina, Ebrahimian, Shadi, Digumarthy, Subba R., Neumark, Nir, Hillis, James M., Kalra, Mannudeep K., Dreyer, Keith J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955317/ https://www.ncbi.nlm.nih.gov/pubmed/36832266 http://dx.doi.org/10.3390/diagnostics13040778 |
Ejemplares similares
-
Radiologist-Trained and -Tested (R2.2.4) Deep Learning Models for Identifying Anatomical Landmarks in Chest CT
por: Kaviani, Parisa, et al.
Publicado: (2022) -
Performance of a Chest Radiography AI Algorithm for Detection of Missed or Mislabeled Findings: A Multicenter Study
por: Kaviani, Parisa, et al.
Publicado: (2022) -
Frequency of Missed Findings on Chest Radiographs (CXRs) in an International, Multicenter Study: Application of AI to Reduce Missed Findings
por: Kaviani, Parisa, et al.
Publicado: (2022) -
Use of radiomics to differentiate left atrial appendage thrombi and mixing artifacts on single-phase CT angiography
por: Ebrahimian, Shadi, et al.
Publicado: (2021) -
Validation pipeline for machine learning algorithm assessment for multiple vendors
por: Bizzo, Bernardo C., et al.
Publicado: (2022)