Cargando…
Manipulating Voice Attributes by Adversarial Learning of Structured Disentangled Representations
Voice conversion (VC) consists of digitally altering the voice of an individual to manipulate part of its content, primarily its identity, while maintaining the rest unchanged. Research in neural VC has accomplished considerable breakthroughs with the capacity to falsify a voice identity using a sma...
Autores principales: | Benaroya, Laurent, Obin, Nicolas, Roebel, Axel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955323/ https://www.ncbi.nlm.nih.gov/pubmed/36832741 http://dx.doi.org/10.3390/e25020375 |
Ejemplares similares
-
Zero-shot style transfer for gesture animation driven by text and speech using adversarial disentanglement of multimodal style encoding
por: Fares, Mireille, et al.
Publicado: (2023) -
MichiGAN: sampling from disentangled representations of single-cell data using generative adversarial networks
por: Yu, Hengshi, et al.
Publicado: (2021) -
Learning cortical representations through perturbed and adversarial dreaming
por: Deperrois, Nicolas, et al.
Publicado: (2022) -
Sequential Variational Autoencoder with Adversarial Classifier for Video Disentanglement
por: Haga, Takeshi, et al.
Publicado: (2023) -
Fast and Accurate Lane Detection via Graph Structure and Disentangled Representation Learning
por: He, Yulin, et al.
Publicado: (2021)