Cargando…
DTBV: A Deep Transfer-Based Bone Cancer Diagnosis System Using VGG16 Feature Extraction
Among the many different types of cancer, bone cancer is the most lethal and least prevalent. More cases are reported each year. Early diagnosis of bone cancer is crucial since it helps limit the spread of malignant cells and reduce mortality. The manual method of detection of bone cancer is cumbers...
Autores principales: | Suganeshwari, G., Balakumar, R., Karuppanan, Kalimuthu, Prathiba, Sahaya Beni, Anbalagan, Sudha, Raja, Gunasekaran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955441/ https://www.ncbi.nlm.nih.gov/pubmed/36832245 http://dx.doi.org/10.3390/diagnostics13040757 |
Ejemplares similares
-
Disease Classification in Eggplant Using Pre-trained VGG16 and MSVM
por: Krishnaswamy Rangarajan, Aravind, et al.
Publicado: (2020) -
Deep learning-based weld defect classification using VGG16 transfer learning adaptive fine-tuning
por: Kumaresan, Samuel, et al.
Publicado: (2023) -
VGG16 Feature Extractor with Extreme Gradient Boost Classifier for Pancreas Cancer Prediction
por: Bakasa, Wilson, et al.
Publicado: (2023) -
Construction of VGG16 Convolution Neural Network (VGG16_CNN) Classifier with NestNet-Based Segmentation Paradigm for Brain Metastasis Classification
por: Alshammari, Abdulaziz
Publicado: (2022) -
Comparative Analysis of Deep Learning Models Used in Impact Analysis of Coronavirus Chest X-ray Imaging
por: Nallakaruppan, Musiri Kailasanathan, et al.
Publicado: (2022)