Cargando…
A Deep Learning-Based Framework for Uncertainty Quantification in Medical Imaging Using the DropWeak Technique: An Empirical Study with Baresnet
Lung cancer is a leading cause of cancer-related deaths globally. Early detection is crucial for improving patient survival rates. Deep learning (DL) has shown promise in the medical field, but its accuracy must be evaluated, particularly in the context of lung cancer classification. In this study,...
Autor principal: | Cifci, Mehmet Akif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955446/ https://www.ncbi.nlm.nih.gov/pubmed/36832288 http://dx.doi.org/10.3390/diagnostics13040800 |
Ejemplares similares
-
Empirical Frequentist Coverage of Deep Learning Uncertainty Quantification Procedures
por: Kompa, Benjamin, et al.
Publicado: (2021) -
Hybrid Deep Learning Approach for Accurate Tumor Detection in Medical Imaging Data
por: Cifci, Mehmet Akif, et al.
Publicado: (2023) -
Evaluation of Uncertainty Quantification in Deep Learning
por: Ståhl, Niclas, et al.
Publicado: (2020) -
A hybrid framework for improving uncertainty quantification in deep learning-based QSAR regression modeling
por: Wang, Dingyan, et al.
Publicado: (2021) -
Robust adversarial uncertainty quantification for deep learning fine-tuning
por: Ahmed, Usman, et al.
Publicado: (2023)