Cargando…
A Pedestrian Detection Network Model Based on Improved YOLOv5
Advanced object detection methods always face high algorithmic complexity or low accuracy when used in pedestrian target detection for the autonomous driving system. This paper proposes a lightweight pedestrian detection approach called the YOLOv5s- [Formula: see text] network to address these issue...
Autores principales: | Li, Ming-Lun, Sun, Guo-Bing, Yu, Jia-Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955538/ https://www.ncbi.nlm.nih.gov/pubmed/36832747 http://dx.doi.org/10.3390/e25020381 |
Ejemplares similares
-
YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection
por: Lv, Haohui, et al.
Publicado: (2022) -
An Improved YOLOv7 Lightweight Detection Algorithm for Obscured Pedestrians
por: Li, Chang, et al.
Publicado: (2023) -
Improved YOLOv4 for Pedestrian Detection and Counting in UAV Images
por: Kong, Hao, et al.
Publicado: (2022) -
Pedestrian detection algorithm integrating large kernel attention and YOLOV5 lightweight model
por: Yin, Yuping, et al.
Publicado: (2023) -
Improved YOLOv3 Integrating SENet and Optimized GIoU Loss for Occluded Pedestrian Detection
por: Zhang, Qiangbo, et al.
Publicado: (2023)