Cargando…
FAD: Fine-Grained Adversarial Detection by Perturbation Intensity Classification
Adversarial examples present a severe threat to deep neural networks’ application in safetycritical domains such as autonomous driving. Although there are numerous defensive solutions, they all have some flaws, such as the fact that they can only defend against adversarial attacks with a limited ran...
Autores principales: | Yang, Jin-Tao, Jiang, Hao, Li, Hao, Ye, Dong-Sheng, Jiang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955552/ https://www.ncbi.nlm.nih.gov/pubmed/36832701 http://dx.doi.org/10.3390/e25020335 |
Ejemplares similares
-
Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification
por: Montero, Alberto, et al.
Publicado: (2021) -
Universal adversarial examples and perturbations for quantum
classifiers
por: Gong, Weiyuan, et al.
Publicado: (2021) -
Exploring Misclassification Information for Fine-Grained Image Classification
por: Wang, Da-Han, et al.
Publicado: (2021) -
Between-Class Adversarial Training for Improving Adversarial Robustness of Image Classification
por: Wang, Desheng, et al.
Publicado: (2023) -
Few-Shot Fine-Grained Image Classification via GNN
por: Zhou, Xiangyu, et al.
Publicado: (2022)