Cargando…
Multi-phase attention network for face super-resolution
Previous general super-resolution methods do not perform well in restoring the details structure information of face images. Prior and attribute-based face super-resolution methods have improved performance with extra trained results. However, they need an additional network and extra training data...
Autores principales: | Hu, Tao, Chen, Yunzhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955580/ https://www.ncbi.nlm.nih.gov/pubmed/36827299 http://dx.doi.org/10.1371/journal.pone.0280986 |
Ejemplares similares
-
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
por: Zhang, Min, et al.
Publicado: (2021) -
Super-Resolution Network with Information Distillation and Multi-Scale Attention for Medical CT Image
por: Zhao, Tianliu, et al.
Publicado: (2021) -
Attention Network with Information Distillation for Super-Resolution
por: Zang, Huaijuan, et al.
Publicado: (2022) -
Accurate and lightweight MRI super-resolution via multi-scale bidirectional fusion attention network
por: Xu, Ling, et al.
Publicado: (2022) -
S2A: Scale-Attention-Aware Networks for Video Super-Resolution
por: Guo, Taian, et al.
Publicado: (2021)