Cargando…

A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

Currently, the deep integration of the Internet of Things (IoT) and edge computing has improved the computing capability of the IoT perception layer. Existing offloading techniques for edge computing suffer from the single problem of solidifying offloading policies. Based on this, combined with the...

Descripción completa

Detalles Bibliográficos
Autores principales: Xing, Yongli, Ye, Tao, Ullah, Sami, Waqas, Muhammad, Alasmary, Hisham, Liu, Zihui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955616/
https://www.ncbi.nlm.nih.gov/pubmed/36827390
http://dx.doi.org/10.1371/journal.pone.0280468
Descripción
Sumario:Currently, the deep integration of the Internet of Things (IoT) and edge computing has improved the computing capability of the IoT perception layer. Existing offloading techniques for edge computing suffer from the single problem of solidifying offloading policies. Based on this, combined with the characteristics of deep reinforcement learning, this paper investigates a computation offloading optimization scheme for the perception layer. The algorithm can adaptively adjust the computational task offloading policy of IoT terminals according to the network changes in the perception layer. Experiments show that the algorithm effectively improves the operational efficiency of the IoT perceptual layer and reduces the average task delay compared with other offloading algorithms.