Cargando…
Deep Neural Network for EEG Signal-Based Subject-Independent Imaginary Mental Task Classification
BACKGROUND. Mental task identification using electroencephalography (EEG) signals is required for patients with limited or no motor movements. A subject-independent mental task classification framework can be applied to identify the mental task of a subject with no available training statistics. Dee...
Autores principales: | Siddiqui, Farheen, Mohammad, Awwab, Alam, M. Afshar, Naaz, Sameena, Agarwal, Parul, Sohail, Shahab Saquib, Madsen, Dag Øivind |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955721/ https://www.ncbi.nlm.nih.gov/pubmed/36832128 http://dx.doi.org/10.3390/diagnostics13040640 |
Ejemplares similares
-
OdorTAM: Technology Acceptance Model for Biometric Authentication System Using Human Body Odor
por: Naaz, Sameena, et al.
Publicado: (2022) -
Tri-model classifiers for EEG based mental task classification: hybrid optimization assisted framework
por: Mohammad, Awwab, et al.
Publicado: (2023) -
Curcumin in Wound Healing—A Bibliometric Analysis
por: Farhat, Faiza, et al.
Publicado: (2023) -
Sustainable Behavior with Respect to Managing E-Wastes: Factors Influencing E-Waste Management among Young Consumers
por: Garg, Swati, et al.
Publicado: (2023) -
Using ChatGPT to navigate ambivalent and contradictory research findings on artificial intelligence
por: Sohail, Shahab Saquib, et al.
Publicado: (2023)