Cargando…
Assessing Search and Unsupervised Clustering Algorithms in Nested Sampling
Nested sampling is an efficient method for calculating Bayesian evidence in data analysis and partition functions of potential energies. It is based on an exploration using a dynamical set of sampling points that evolves to higher values of the sampled function. When several maxima are present, this...
Autores principales: | Maillard, Lune, Finocchi, Fabio, Trassinelli, Martino |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955770/ https://www.ncbi.nlm.nih.gov/pubmed/36832713 http://dx.doi.org/10.3390/e25020347 |
Ejemplares similares
-
Mean Shift Cluster Recognition Method Implementation in the Nested Sampling Algorithm
por: Trassinelli, Martino, et al.
Publicado: (2020) -
An unsupervised neuromorphic clustering algorithm
por: Diamond, Alan, et al.
Publicado: (2019) -
Unsupervised ranking of clustering algorithms by INFOMAX
por: Sikdar, Sandipan, et al.
Publicado: (2020) -
Probiotic potential characterization and clustering using unsupervised algorithms of lactic acid bacteria from saltwater fish samples
por: Mazlumi, Atefeh, et al.
Publicado: (2022) -
CLAG: an unsupervised non hierarchical clustering algorithm handling biological data
por: Dib, Linda, et al.
Publicado: (2012)