Cargando…
A Hybrid Machine Learning Approach to Screen Optimal Predictors for the Classification of Primary Breast Tumors from Gene Expression Microarray Data
The high dimensionality and sparsity of the microarray gene expression data make it challenging to analyze and screen the optimal subset of genes as predictors of breast cancer (BC). The authors in the present study propose a novel hybrid Feature Selection (FS) sequential framework involving minimum...
Autores principales: | Alromema, Nashwan, Syed, Asif Hassan, Khan, Tabrej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955903/ https://www.ncbi.nlm.nih.gov/pubmed/36832196 http://dx.doi.org/10.3390/diagnostics13040708 |
Ejemplares similares
-
A Hybrid Feature Selection Approach to Screen a Novel Set of Blood Biomarkers for Early COVID-19 Mortality Prediction
por: Syed, Asif Hassan, et al.
Publicado: (2022) -
Evolution of research trends in artificial intelligence for breast cancer diagnosis and prognosis over the past two decades: A bibliometric analysis
por: Syed, Asif Hassan, et al.
Publicado: (2022) -
Corrigendum: Evolution of research trends in artificial intelligence for breast cancer diagnosis and prognosis over the past two decades: A bibliometric analysis
por: Syed, Asif Hassan, et al.
Publicado: (2023) -
Classification of microarrays; synergistic effects between normalization, gene selection and machine learning
por: Önskog, Jenny, et al.
Publicado: (2011) -
Gene selection and classification for cancer microarray data based on machine learning and similarity measures
por: Liu, Qingzhong, et al.
Publicado: (2011)