Cargando…
Kernel Partial Least Squares Feature Selection Based on Maximum Weight Minimum Redundancy
Feature selection refers to a vital function in machine learning and data mining. The maximum weight minimum redundancy feature selection method not only considers the importance of features but also reduces the redundancy among features. However, the characteristics of various datasets are not iden...
Autores principales: | Liu, Xiling, Zhou, Shuisheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955929/ https://www.ncbi.nlm.nih.gov/pubmed/36832691 http://dx.doi.org/10.3390/e25020325 |
Ejemplares similares
-
Kernelized partial least squares for feature reduction and classification of gene microarray data
por: Land, Walker H, et al.
Publicado: (2011) -
AlPOs Synthetic Factor Analysis Based on Maximum Weight and Minimum Redundancy Feature Selection
por: Guo, Yuting, et al.
Publicado: (2013) -
Maximum Relevance Minimum Redundancy Dropout with Informative Kernel Determinantal Point Process
por: Saffari, Mohsen, et al.
Publicado: (2021) -
Colorimetric Characterization of Color Imaging System Based on Kernel Partial Least Squares
por: Zhao, Siyu, et al.
Publicado: (2023) -
Simultaneous spectrophotometric determination of manganese, zinc and cobalt by kernel partial least–squares method
por: Gao, Ling, et al.
Publicado: (1998)