Cargando…
A Textual Backdoor Defense Method Based on Deep Feature Classification
Natural language processing (NLP) models based on deep neural networks (DNNs) are vulnerable to backdoor attacks. Existing backdoor defense methods have limited effectiveness and coverage scenarios. We propose a textual backdoor defense method based on deep feature classification. The method include...
Autores principales: | Shao, Kun, Yang, Junan, Hu, Pengjiang, Li, Xiaoshuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955932/ https://www.ncbi.nlm.nih.gov/pubmed/36832587 http://dx.doi.org/10.3390/e25020220 |
Ejemplares similares
-
Edge-Cloud Collaborative Defense against Backdoor Attacks in Federated Learning
por: Yang, Jie, et al.
Publicado: (2023) -
Backdoors for Linear Temporal Logic
por: Meier, Arne, et al.
Publicado: (2018) -
An efficient approach for textual data classification using deep learning
por: Alqahtani, Abdullah, et al.
Publicado: (2022) -
IBD: An Interpretable Backdoor-Detection Method via Multivariate Interactions
por: Xu, Yixiao, et al.
Publicado: (2022) -
Backdoor Attack against Face Sketch Synthesis
por: Zhang, Shengchuan, et al.
Publicado: (2023)