Cargando…
An Inexact Feasible Quantum Interior Point Method for Linearly Constrained Quadratic Optimization
Quantum linear system algorithms (QLSAs) have the potential to speed up algorithms that rely on solving linear systems. Interior point methods (IPMs) yield a fundamental family of polynomial-time algorithms for solving optimization problems. IPMs solve a Newton linear system at each iteration to com...
Autores principales: | Wu, Zeguan, Mohammadisiahroudi, Mohammadhossein, Augustino, Brandon, Yang, Xiu, Terlaky, Tamás |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956007/ https://www.ncbi.nlm.nih.gov/pubmed/36832696 http://dx.doi.org/10.3390/e25020330 |
Ejemplares similares
-
Interior point methods for linear optimization
por: Roos, Cornelis, et al.
Publicado: (2005) -
Interior point methods of mathematical programming
por: Terlaky, Tamas
Publicado: (1996) -
Linear optimization problems with inexact data
por: Fiedler, M, et al.
Publicado: (2006) -
Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization
por: Pearson, John W., et al.
Publicado: (2017) -
Interior point approach to linear, quadratic and convex programming: algorithms and complexity
por: Hertog, D
Publicado: (1994)