Cargando…
Generation of synthetic tympanic membrane images: Development, human validation, and clinical implications of synthetic data
Synthetic clinical images could augment real medical image datasets, a novel approach in otolaryngology–head and neck surgery (OHNS). Our objective was to develop a generative adversarial network (GAN) for tympanic membrane images and to validate the quality of synthetic images with human reviewers....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956018/ https://www.ncbi.nlm.nih.gov/pubmed/36827244 http://dx.doi.org/10.1371/journal.pdig.0000202 |
Sumario: | Synthetic clinical images could augment real medical image datasets, a novel approach in otolaryngology–head and neck surgery (OHNS). Our objective was to develop a generative adversarial network (GAN) for tympanic membrane images and to validate the quality of synthetic images with human reviewers. Our model was developed using a state-of-the-art GAN architecture, StyleGAN2-ADA. The network was trained on intraoperative high-definition (HD) endoscopic images of tympanic membranes collected from pediatric patients undergoing myringotomy with possible tympanostomy tube placement. A human validation survey was administered to a cohort of OHNS and pediatrics trainees at our institution. The primary measure of model quality was the Frechet Inception Distance (FID), a metric comparing the distribution of generated images with the distribution of real images. The measures used for human reviewer validation were the sensitivity, specificity, and area under the curve (AUC) for humans’ ability to discern synthetic from real images. Our dataset comprised 202 images. The best GAN was trained at 512x512 image resolution with a FID of 47.0. The progression of images through training showed stepwise “learning” of the anatomic features of a tympanic membrane. The validation survey was taken by 65 persons who reviewed 925 images. Human reviewers demonstrated a sensitivity of 66%, specificity of 73%, and AUC of 0.69 for the detection of synthetic images. In summary, we successfully developed a GAN to produce synthetic tympanic membrane images and validated this with human reviewers. These images could be used to bolster real datasets with various pathologies and develop more robust deep learning models such as those used for diagnostic predictions from otoscopic images. However, caution should be exercised with the use of synthetic data given issues regarding data diversity and performance validation. Any model trained using synthetic data will require robust external validation to ensure validity and generalizability. |
---|