Cargando…
A deep learning system for heart failure mortality prediction
Heart failure (HF) is the final stage of the various heart diseases developing. The mortality rates of prognosis HF patients are highly variable, ranging from 5% to 75%. Evaluating the all-cause mortality of HF patients is an important means to avoid death and positively affect the health of patient...
Autores principales: | Li, Dengao, Fu, Jian, Zhao, Jumin, Qin, Junnan, Zhang, Lihui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956019/ https://www.ncbi.nlm.nih.gov/pubmed/36827436 http://dx.doi.org/10.1371/journal.pone.0276835 |
Ejemplares similares
-
Fast and Reliable Burst Data Transmission for Backscatter Communications
por: Zhao, Jumin, et al.
Publicado: (2019) -
New convolutional neural network model for screening and diagnosis of mammograms
por: Zhang, Chen, et al.
Publicado: (2020) -
Autodetection of J Wave Based on Random Forest with Synchrosqueezed Wavelet Transform
por: Li, Dengao, et al.
Publicado: (2018) -
RAEN: Rate Adaptation for Effective Nodes in Backscatter Networks
por: Zhao, Jumin, et al.
Publicado: (2022) -
Machine Learning for Mortality Prediction in Patients With Heart Failure With Mildly Reduced Ejection Fraction
por: Tian, Pengchao, et al.
Publicado: (2023)