Cargando…
Learning deep abdominal CT registration through adaptive loss weighting and synthetic data generation
PURPOSE: This study aims to explore training strategies to improve convolutional neural network-based image-to-image deformable registration for abdominal imaging. METHODS: Different training strategies, loss functions, and transfer learning schemes were considered. Furthermore, an augmentation laye...
Autores principales: | Pérez de Frutos, Javier, Pedersen, André, Pelanis, Egidijus, Bouget, David, Survarachakan, Shanmugapriya, Langø, Thomas, Elle, Ole-Jakob, Lindseth, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956065/ https://www.ncbi.nlm.nih.gov/pubmed/36827289 http://dx.doi.org/10.1371/journal.pone.0282110 |
Ejemplares similares
-
Laboratory test of Single Landmark registration method for ultrasound-based navigation in laparoscopy using an open-source platform
por: Pérez de Frutos, Javier, et al.
Publicado: (2018) -
Evaluation of clinical applicability of automated liver parenchyma segmentation of multi-center magnetic resonance images
por: Nainamalai, Varatharajan, et al.
Publicado: (2022) -
The effect of intraoperative imaging on surgical navigation for laparoscopic liver resection surgery
por: Teatini, Andrea, et al.
Publicado: (2019) -
Teacher-student approach for lung tumor segmentation from mixed-supervised datasets
por: Fredriksen, Vemund, et al.
Publicado: (2022) -
Laparoscopic Parenchyma-sparing Liver Resection for Colorectal Metastases
por: Aghayan, Davit L., et al.
Publicado: (2017)