Cargando…
Improving deep learning-based segmentation of diatoms in gigapixel-sized virtual slides by object-based tile positioning and object integrity constraint
Diatoms represent one of the morphologically and taxonomically most diverse groups of microscopic eukaryotes. Light microscopy-based taxonomic identification and enumeration of frustules, the silica shells of these microalgae, is broadly used in aquatic ecology and biomonitoring. One key step in eme...
Autores principales: | Kloster, Michael, Burfeid-Castellanos, Andrea M., Langenkämper, Daniel, Nattkemper, Tim W., Beszteri, Bánk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956069/ https://www.ncbi.nlm.nih.gov/pubmed/36827378 http://dx.doi.org/10.1371/journal.pone.0272103 |
Ejemplares similares
-
Deep learning-based diatom taxonomy on virtual slides
por: Kloster, Michael, et al.
Publicado: (2020) -
SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects
por: Kloster, Michael, et al.
Publicado: (2014) -
Epiphytic diatom community structure and richness is determined by macroalgal host and location in the South Shetland Islands (Antarctica)
por: Burfeid-Castellanos, Andrea M., et al.
Publicado: (2021) -
Virtual alignment of pathology image series for multi-gigapixel whole slide images
por: Gatenbee, Chandler D., et al.
Publicado: (2023) -
The Impact of Data Augmentations on Deep Learning-Based Marine Object Classification in Benthic Image Transects
por: Tan, Mingkun, et al.
Publicado: (2022)