Cargando…
Real-time (nanoseconds) determination of liquid phase growth during shock-induced melting
Melting of solids is a fundamental natural phenomenon whose pressure dependence has been of interest for nearly a century. However, the temporal evolution of the molten phase under pressure has eluded measurements because of experimental challenges. By using the shock front as a fiducial, we investi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956119/ https://www.ncbi.nlm.nih.gov/pubmed/36827368 http://dx.doi.org/10.1126/sciadv.ade5745 |
Sumario: | Melting of solids is a fundamental natural phenomenon whose pressure dependence has been of interest for nearly a century. However, the temporal evolution of the molten phase under pressure has eluded measurements because of experimental challenges. By using the shock front as a fiducial, we investigated the time-dependent growth of the molten phase in shock-compressed germanium. In situ x-ray diffraction measurements at different times (1 to 6 nanoseconds) behind the shock front quantified the real-time growth of the liquid phase at several peak stresses. These results show that the characteristic time for melting in shock-compressed germanium decreases from ~7.2 nanoseconds at 35 gigapascals to less than 1 nanosecond at 42 gigapascals. Our melting kinetics results suggest the need to consider heterogeneous nucleation as a mechanism for shock-induced melting and provide an approach to measuring melting kinetics in shock-compressed solids. |
---|