Cargando…
Variable Selection for Sparse Data with Applications to Vaginal Microbiome and Gene Expression Data
Sparse data with a high portion of zeros arise in various disciplines. Modeling sparse high-dimensional data is a challenging and growing research area. In this paper, we provide statistical methods and tools for analyzing sparse data in a fairly general and complex context. We utilize two real scie...
Autores principales: | Dousti Mousavi, Niloufar, Yang, Jie, Aldirawi, Hani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956208/ https://www.ncbi.nlm.nih.gov/pubmed/36833330 http://dx.doi.org/10.3390/genes14020403 |
Ejemplares similares
-
Categorical Data Analysis for High-Dimensional Sparse Gene Expression Data
por: Dousti Mousavi, Niloufar, et al.
Publicado: (2023) -
A variant of sparse partial least squares for variable selection and data exploration
por: Olson Hunt, Megan J., et al.
Publicado: (2014) -
Leveraging pleiotropic association using sparse group variable selection in genomics data
por: Sutton, Matthew, et al.
Publicado: (2022) -
Variable selection in microbiome compositional data analysis
por: Susin, Antoni, et al.
Publicado: (2020) -
Sparse Regression in Cancer Genomics: Comparing Variable Selection and Predictions in Real World Data
por: O’Shea, Robert J, et al.
Publicado: (2021)