Cargando…

A New Design of Poly(N-Isopropylacrylamide) Hydrogels Using Biodegradable Poly(Beta-Aminoester) Crosslinkers as Fertilizer Reservoirs for Agricultural Applications

Poly(N-isopropylacrylamide) (P(NIPAAm)) hydrogels were prepared by free-radical polymerization with biodegradable poly (β-amino ester) (PBAE) crosslinkers at 1 wt% and 3 wt% ratio, and compared with conventional N,N′-methylene bisacrylamide (MBA)-crosslinked hydrogel. The influence of the type, mole...

Descripción completa

Detalles Bibliográficos
Autor principal: Balçık Tamer, Yasemin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956257/
https://www.ncbi.nlm.nih.gov/pubmed/36826297
http://dx.doi.org/10.3390/gels9020127
Descripción
Sumario:Poly(N-isopropylacrylamide) (P(NIPAAm)) hydrogels were prepared by free-radical polymerization with biodegradable poly (β-amino ester) (PBAE) crosslinkers at 1 wt% and 3 wt% ratio, and compared with conventional N,N′-methylene bisacrylamide (MBA)-crosslinked hydrogel. The influence of the type, molecular weight, and diacrylate/amine ratio of the crosslinker on the crosslink density, compressive strength, and swelling and biodegradation behavior of the hydrogels was investigated. The hydrogels synthesized with lower molecular weight PBAE crosslinkers showed higher crosslinking degrees and compressive strength and lower swelling ratios. To reveal the controlled release behavior of the fertilizer, KNO(3) was used as the model, and its loading and release behavior from these hydrogels was also examined. The N/T5/1 sample with 1.5/1.0 diacrylate/amine molar ratio and 1 wt% PBAE ratio demonstrated the most controlled release of KNO(3) with 66.9% after 18 days in soil. In addition, the hydrogel with the porosity of 71.65% and crosslinking degree of 2.85 × 10(−5) mol cm(−3) showed a swelling ratio of 69.44 g/g, biodegradation rate of 23.9%, and compressive strength of 1.074 MPa. Thus, it can be concluded that the new designed biodegradable P(NIPAAm) hydrogels can be promising materials as nitrate fertilizer reservoirs and also for controlled fertilizer release in soil media for agricultural applications.