Cargando…
Investigation of UTR Variants by Computational Approaches Reveal Their Functional Significance in PRKCI Gene Regulation
Single nucleotide polymorphisms (SNPs) are associated with many diseases including neurological disorders, heart diseases, diabetes, and different types of cancers. In the context of cancer, the variations within non-coding regions, including UTRs, have gained utmost importance. In gene expression,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956319/ https://www.ncbi.nlm.nih.gov/pubmed/36833174 http://dx.doi.org/10.3390/genes14020247 |
_version_ | 1784894563386654720 |
---|---|
author | Shah, Hania Khan, Khushbukhat Badshah, Yasmin Mahmood Ashraf, Naeem Shabbir, Maria Trembley, Janeen H. Afsar, Tayyaba Abusharha, Ali Razak, Suhail |
author_facet | Shah, Hania Khan, Khushbukhat Badshah, Yasmin Mahmood Ashraf, Naeem Shabbir, Maria Trembley, Janeen H. Afsar, Tayyaba Abusharha, Ali Razak, Suhail |
author_sort | Shah, Hania |
collection | PubMed |
description | Single nucleotide polymorphisms (SNPs) are associated with many diseases including neurological disorders, heart diseases, diabetes, and different types of cancers. In the context of cancer, the variations within non-coding regions, including UTRs, have gained utmost importance. In gene expression, translational regulation is as important as transcriptional regulation for the normal functioning of cells; modification in normal functions can be associated with the pathophysiology of many diseases. UTR-localized SNPs in the PRKCI gene were evaluated using the PolymiRTS, miRNASNP, and MicroSNIper for association with miRNAs. Furthermore, the SNPs were subjected to analysis using GTEx, RNAfold, and PROMO. The genetic intolerance to functional variation was checked through GeneCards. Out of 713 SNPs, a total of thirty-one UTR SNPs (three in 3′ UTR region and twenty-nine in 5′ UTR region) were marked as ≤2b by RegulomeDB. The associations of 23 SNPs with miRNAs were found. Two SNPs, rs140672226 and rs2650220, were significantly linked with expression in the stomach and esophagus mucosa. The 3′ UTR SNPs rs1447651774 and rs115170199 and the 5′ UTR region variants rs778557075, rs968409340, and 750297755 were predicted to destabilize the mRNA structure with substantial change in free energy (∆G). Seventeen variants were predicted to have linkage disequilibrium with various diseases. The SNP rs542458816 in 5′ UTR was predicted to put maximum influence on transcription factor binding sites. Gene damage index(GDI) and loss of function (o:e) ratio values for PRKCI suggested that the gene is not tolerant to loss of function variants. Our results highlight the effects of 3′ and 5′ UTR SNP on miRNA, transcription and translation of PRKCI. These analyses suggest that these SNPs can have substantial functional importance in the PRKCI gene. Future experimental validation could provide further basis for the diagnosis and therapeutics of various diseases. |
format | Online Article Text |
id | pubmed-9956319 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99563192023-02-25 Investigation of UTR Variants by Computational Approaches Reveal Their Functional Significance in PRKCI Gene Regulation Shah, Hania Khan, Khushbukhat Badshah, Yasmin Mahmood Ashraf, Naeem Shabbir, Maria Trembley, Janeen H. Afsar, Tayyaba Abusharha, Ali Razak, Suhail Genes (Basel) Article Single nucleotide polymorphisms (SNPs) are associated with many diseases including neurological disorders, heart diseases, diabetes, and different types of cancers. In the context of cancer, the variations within non-coding regions, including UTRs, have gained utmost importance. In gene expression, translational regulation is as important as transcriptional regulation for the normal functioning of cells; modification in normal functions can be associated with the pathophysiology of many diseases. UTR-localized SNPs in the PRKCI gene were evaluated using the PolymiRTS, miRNASNP, and MicroSNIper for association with miRNAs. Furthermore, the SNPs were subjected to analysis using GTEx, RNAfold, and PROMO. The genetic intolerance to functional variation was checked through GeneCards. Out of 713 SNPs, a total of thirty-one UTR SNPs (three in 3′ UTR region and twenty-nine in 5′ UTR region) were marked as ≤2b by RegulomeDB. The associations of 23 SNPs with miRNAs were found. Two SNPs, rs140672226 and rs2650220, were significantly linked with expression in the stomach and esophagus mucosa. The 3′ UTR SNPs rs1447651774 and rs115170199 and the 5′ UTR region variants rs778557075, rs968409340, and 750297755 were predicted to destabilize the mRNA structure with substantial change in free energy (∆G). Seventeen variants were predicted to have linkage disequilibrium with various diseases. The SNP rs542458816 in 5′ UTR was predicted to put maximum influence on transcription factor binding sites. Gene damage index(GDI) and loss of function (o:e) ratio values for PRKCI suggested that the gene is not tolerant to loss of function variants. Our results highlight the effects of 3′ and 5′ UTR SNP on miRNA, transcription and translation of PRKCI. These analyses suggest that these SNPs can have substantial functional importance in the PRKCI gene. Future experimental validation could provide further basis for the diagnosis and therapeutics of various diseases. MDPI 2023-01-18 /pmc/articles/PMC9956319/ /pubmed/36833174 http://dx.doi.org/10.3390/genes14020247 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shah, Hania Khan, Khushbukhat Badshah, Yasmin Mahmood Ashraf, Naeem Shabbir, Maria Trembley, Janeen H. Afsar, Tayyaba Abusharha, Ali Razak, Suhail Investigation of UTR Variants by Computational Approaches Reveal Their Functional Significance in PRKCI Gene Regulation |
title | Investigation of UTR Variants by Computational Approaches Reveal Their Functional Significance in PRKCI Gene Regulation |
title_full | Investigation of UTR Variants by Computational Approaches Reveal Their Functional Significance in PRKCI Gene Regulation |
title_fullStr | Investigation of UTR Variants by Computational Approaches Reveal Their Functional Significance in PRKCI Gene Regulation |
title_full_unstemmed | Investigation of UTR Variants by Computational Approaches Reveal Their Functional Significance in PRKCI Gene Regulation |
title_short | Investigation of UTR Variants by Computational Approaches Reveal Their Functional Significance in PRKCI Gene Regulation |
title_sort | investigation of utr variants by computational approaches reveal their functional significance in prkci gene regulation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956319/ https://www.ncbi.nlm.nih.gov/pubmed/36833174 http://dx.doi.org/10.3390/genes14020247 |
work_keys_str_mv | AT shahhania investigationofutrvariantsbycomputationalapproachesrevealtheirfunctionalsignificanceinprkcigeneregulation AT khankhushbukhat investigationofutrvariantsbycomputationalapproachesrevealtheirfunctionalsignificanceinprkcigeneregulation AT badshahyasmin investigationofutrvariantsbycomputationalapproachesrevealtheirfunctionalsignificanceinprkcigeneregulation AT mahmoodashrafnaeem investigationofutrvariantsbycomputationalapproachesrevealtheirfunctionalsignificanceinprkcigeneregulation AT shabbirmaria investigationofutrvariantsbycomputationalapproachesrevealtheirfunctionalsignificanceinprkcigeneregulation AT trembleyjaneenh investigationofutrvariantsbycomputationalapproachesrevealtheirfunctionalsignificanceinprkcigeneregulation AT afsartayyaba investigationofutrvariantsbycomputationalapproachesrevealtheirfunctionalsignificanceinprkcigeneregulation AT abusharhaali investigationofutrvariantsbycomputationalapproachesrevealtheirfunctionalsignificanceinprkcigeneregulation AT razaksuhail investigationofutrvariantsbycomputationalapproachesrevealtheirfunctionalsignificanceinprkcigeneregulation |