Cargando…
AI reveals insights into link between CD33 and cognitive impairment in Alzheimer’s Disease
Modeling biological mechanisms is a key for disease understanding and drug-target identification. However, formulating quantitative models in the field of Alzheimer’s Disease is challenged by a lack of detailed knowledge of relevant biochemical processes. Additionally, fitting differential equation...
Autores principales: | Raschka, Tamara, Sood, Meemansa, Schultz, Bruce, Altay, Aybuge, Ebeling, Christian, Fröhlich, Holger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956604/ https://www.ncbi.nlm.nih.gov/pubmed/36780558 http://dx.doi.org/10.1371/journal.pcbi.1009894 |
Ejemplares similares
-
Variational Autoencoder Modular Bayesian Networks for Simulation of Heterogeneous Clinical Study Data
por: Gootjes-Dreesbach, Luise, et al.
Publicado: (2020) -
Generation of realistic synthetic data using Multimodal Neural Ordinary Differential Equations
por: Wendland, Philipp, et al.
Publicado: (2022) -
Clustering of Alzheimer’s and Parkinson’s disease based on genetic burden of shared molecular mechanisms
por: Emon, Mohammad Asif, et al.
Publicado: (2020) -
A machine learning method for the identification and characterization of novel COVID-19 drug targets
por: Schultz, Bruce, et al.
Publicado: (2023) -
Realistic simulation of virtual multi-scale, multi-modal patient trajectories using Bayesian networks and sparse auto-encoders
por: Sood, Meemansa, et al.
Publicado: (2020)