Cargando…
Deep Learning-Based Intelligent Apple Variety Classification System and Model Interpretability Analysis
In this study, series networks (AlexNet and VGG-19) and directed acyclic graph (DAG) networks (ResNet-18, ResNet-50, and ResNet-101) with transfer learning were employed to identify and classify 13 classes of apples from 7439 images. Two training datasets, model evaluation metrics, and three visuali...
Autores principales: | Yu, Fanqianhui, Lu, Tao, Xue, Changhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956933/ https://www.ncbi.nlm.nih.gov/pubmed/36832960 http://dx.doi.org/10.3390/foods12040885 |
Ejemplares similares
-
A generic intelligent tomato classification system for practical applications using DenseNet-201 with transfer learning
por: Lu, Tao, et al.
Publicado: (2021) -
Author Correction: A generic intelligent tomato classification system for practical applications using DenseNet-201 with transfer learning
por: Lu, Tao, et al.
Publicado: (2021) -
An Intelligent Method for Predicting Pacific Oyster (Crassostrea gigas) Freshness Using Deep Learning Fused with Malondialdehyde and Total Sulfhydryl Groups Information
por: Lu, Tao, et al.
Publicado: (2023) -
Interpretable deep learning‐based hippocampal sclerosis classification
por: Kim, Dohyun, et al.
Publicado: (2022) -
Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification
por: Qiu, Shangran, et al.
Publicado: (2020)