Cargando…
Formulation, In Vitro and In Silico Evaluations of Anise (Pimpinella anisum L.) Essential Oil Emulgel with Improved Antimicrobial Effects
Over the past decade, researchers have made several efforts to develop gel-based formulations that provide an alternative to traditional hydrogels and emulgel. Due to its excellent antibacterial properties, anise, the main constituent of Pimpinella anisum L., widely used in pharmaceuticals, was sele...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957046/ https://www.ncbi.nlm.nih.gov/pubmed/36826281 http://dx.doi.org/10.3390/gels9020111 |
_version_ | 1784894728430419968 |
---|---|
author | Azam, Faizul Alqarni, Mohammed H. Alnasser, Sulaiman Mohammed Alam, Prawez Jawaid, Talha Kamal, Mehnaz Khan, Shamshir Alam, Aftab |
author_facet | Azam, Faizul Alqarni, Mohammed H. Alnasser, Sulaiman Mohammed Alam, Prawez Jawaid, Talha Kamal, Mehnaz Khan, Shamshir Alam, Aftab |
author_sort | Azam, Faizul |
collection | PubMed |
description | Over the past decade, researchers have made several efforts to develop gel-based formulations that provide an alternative to traditional hydrogels and emulgel. Due to its excellent antibacterial properties, anise, the main constituent of Pimpinella anisum L., widely used in pharmaceuticals, was selected as the active ingredient in this study. Since many bacteria have developed considerable antibiotic resistance, this research aimed to develop an herbal emulgel for treating skin infections caused by bacteria. Given these obstacles, we developed and evaluated a new, cost-effective topical emulgel solution containing anise essential oil against Escherichia coli (E. coli). Anise-based emulgels, potential drug delivery platforms, have been evaluated for various parameters, including physical properties, viscosity, pH, rheology, encapsulation efficiency, and in vitro release research. The AEOs emulgel demonstrated remarkable colloidal stability, with a zeta potential of 29 mV, a size of 149.05 nm, and considerable polydispersity. The efficacy of anise-loaded emulgels as antibacterial formulations was evaluated in vitro. E. coli was used as a model microbial organism for the antibacterial study. Human keratinocytes (HaCaT) were used to examine the biocompatibility of the emulgel. Molecular docking revealed that the essential oil components of Pimpinella anisum L. possess a high affinity for the bacterial adhesin protein FimH of E. coli. These findings indicate that the developed AEOs have the potential to be analyzed using E. coli as a model organism. |
format | Online Article Text |
id | pubmed-9957046 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99570462023-02-25 Formulation, In Vitro and In Silico Evaluations of Anise (Pimpinella anisum L.) Essential Oil Emulgel with Improved Antimicrobial Effects Azam, Faizul Alqarni, Mohammed H. Alnasser, Sulaiman Mohammed Alam, Prawez Jawaid, Talha Kamal, Mehnaz Khan, Shamshir Alam, Aftab Gels Article Over the past decade, researchers have made several efforts to develop gel-based formulations that provide an alternative to traditional hydrogels and emulgel. Due to its excellent antibacterial properties, anise, the main constituent of Pimpinella anisum L., widely used in pharmaceuticals, was selected as the active ingredient in this study. Since many bacteria have developed considerable antibiotic resistance, this research aimed to develop an herbal emulgel for treating skin infections caused by bacteria. Given these obstacles, we developed and evaluated a new, cost-effective topical emulgel solution containing anise essential oil against Escherichia coli (E. coli). Anise-based emulgels, potential drug delivery platforms, have been evaluated for various parameters, including physical properties, viscosity, pH, rheology, encapsulation efficiency, and in vitro release research. The AEOs emulgel demonstrated remarkable colloidal stability, with a zeta potential of 29 mV, a size of 149.05 nm, and considerable polydispersity. The efficacy of anise-loaded emulgels as antibacterial formulations was evaluated in vitro. E. coli was used as a model microbial organism for the antibacterial study. Human keratinocytes (HaCaT) were used to examine the biocompatibility of the emulgel. Molecular docking revealed that the essential oil components of Pimpinella anisum L. possess a high affinity for the bacterial adhesin protein FimH of E. coli. These findings indicate that the developed AEOs have the potential to be analyzed using E. coli as a model organism. MDPI 2023-01-28 /pmc/articles/PMC9957046/ /pubmed/36826281 http://dx.doi.org/10.3390/gels9020111 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Azam, Faizul Alqarni, Mohammed H. Alnasser, Sulaiman Mohammed Alam, Prawez Jawaid, Talha Kamal, Mehnaz Khan, Shamshir Alam, Aftab Formulation, In Vitro and In Silico Evaluations of Anise (Pimpinella anisum L.) Essential Oil Emulgel with Improved Antimicrobial Effects |
title | Formulation, In Vitro and In Silico Evaluations of Anise (Pimpinella anisum L.) Essential Oil Emulgel with Improved Antimicrobial Effects |
title_full | Formulation, In Vitro and In Silico Evaluations of Anise (Pimpinella anisum L.) Essential Oil Emulgel with Improved Antimicrobial Effects |
title_fullStr | Formulation, In Vitro and In Silico Evaluations of Anise (Pimpinella anisum L.) Essential Oil Emulgel with Improved Antimicrobial Effects |
title_full_unstemmed | Formulation, In Vitro and In Silico Evaluations of Anise (Pimpinella anisum L.) Essential Oil Emulgel with Improved Antimicrobial Effects |
title_short | Formulation, In Vitro and In Silico Evaluations of Anise (Pimpinella anisum L.) Essential Oil Emulgel with Improved Antimicrobial Effects |
title_sort | formulation, in vitro and in silico evaluations of anise (pimpinella anisum l.) essential oil emulgel with improved antimicrobial effects |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957046/ https://www.ncbi.nlm.nih.gov/pubmed/36826281 http://dx.doi.org/10.3390/gels9020111 |
work_keys_str_mv | AT azamfaizul formulationinvitroandinsilicoevaluationsofanisepimpinellaanisumlessentialoilemulgelwithimprovedantimicrobialeffects AT alqarnimohammedh formulationinvitroandinsilicoevaluationsofanisepimpinellaanisumlessentialoilemulgelwithimprovedantimicrobialeffects AT alnassersulaimanmohammed formulationinvitroandinsilicoevaluationsofanisepimpinellaanisumlessentialoilemulgelwithimprovedantimicrobialeffects AT alamprawez formulationinvitroandinsilicoevaluationsofanisepimpinellaanisumlessentialoilemulgelwithimprovedantimicrobialeffects AT jawaidtalha formulationinvitroandinsilicoevaluationsofanisepimpinellaanisumlessentialoilemulgelwithimprovedantimicrobialeffects AT kamalmehnaz formulationinvitroandinsilicoevaluationsofanisepimpinellaanisumlessentialoilemulgelwithimprovedantimicrobialeffects AT khanshamshir formulationinvitroandinsilicoevaluationsofanisepimpinellaanisumlessentialoilemulgelwithimprovedantimicrobialeffects AT alamaftab formulationinvitroandinsilicoevaluationsofanisepimpinellaanisumlessentialoilemulgelwithimprovedantimicrobialeffects |