Cargando…

Copy Number Variation Analysis Revealed the Evolutionary Difference between Chinese Indigenous Pigs and Asian Wild Boars

Copy number variation (CNV) has been widely used to study the evolution of different species. We first discovered different CNVs in 24 Anqingliubai pigs and 6 Asian wild boars using next-generation sequencing at the whole-genome level with 10× depth to understand the relationship between genetic evo...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Shuhao, Kong, Chengcheng, Chen, Yige, Zheng, Xianrui, Zhou, Ren, Zhang, Xiaodong, Wu, Xudong, Zhang, Wei, Ding, Yueyun, Yin, Zongjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957247/
https://www.ncbi.nlm.nih.gov/pubmed/36833399
http://dx.doi.org/10.3390/genes14020472
Descripción
Sumario:Copy number variation (CNV) has been widely used to study the evolution of different species. We first discovered different CNVs in 24 Anqingliubai pigs and 6 Asian wild boars using next-generation sequencing at the whole-genome level with 10× depth to understand the relationship between genetic evolution and production traits in wild boars and domestic pigs. A total of 97,489 CNVs were identified and divided into 10,429 copy number variation regions (CNVRs), occupying 32.06% of the porcine genome. Chromosome 1 had the most CNVRs, and chromosome 18 had the least. Ninety-six CNVRs were selected using VST 1% based on the signatures of all CNVRs, and sixty-five genes were identified in the selected regions. These genes were strongly correlated with traits distinguishing groups by enrichment in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways, such as growth (CD36), reproduction (CIT, RLN), detoxification (CYP3A29), and fatty acid metabolism (ELOVL6). The QTL overlapping regions were associated with meat traits, growth, and immunity, which was consistent with CNV analysis. Our findings increase the understanding of evolved genome structural variations between wild boars and domestic pigs, and provide new molecular biomarkers to guide breeding and the efficient use of available genetic resources.