Cargando…
A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept
The consolidation of telerehabilitation for the treatment of many diseases over the last decades is a consequence of its cost-effective results and its ability to offer access to rehabilitation in remote areas. Telerehabilitation operates over a distance, so vulnerable patients are never exposed to...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957301/ https://www.ncbi.nlm.nih.gov/pubmed/36833041 http://dx.doi.org/10.3390/healthcare11040507 |
_version_ | 1784894792212152320 |
---|---|
author | Ramírez-Sanz, José Miguel Garrido-Labrador, José Luis Olivares-Gil, Alicia García-Bustillo, Álvaro Arnaiz-González, Álvar Díez-Pastor, José-Francisco Jahouh, Maha González-Santos, Josefa González-Bernal, Jerónimo J. Allende-Río, Marta Valiñas-Sieiro, Florita Trejo-Gabriel-Galan, Jose M. Cubo, Esther |
author_facet | Ramírez-Sanz, José Miguel Garrido-Labrador, José Luis Olivares-Gil, Alicia García-Bustillo, Álvaro Arnaiz-González, Álvar Díez-Pastor, José-Francisco Jahouh, Maha González-Santos, Josefa González-Bernal, Jerónimo J. Allende-Río, Marta Valiñas-Sieiro, Florita Trejo-Gabriel-Galan, Jose M. Cubo, Esther |
author_sort | Ramírez-Sanz, José Miguel |
collection | PubMed |
description | The consolidation of telerehabilitation for the treatment of many diseases over the last decades is a consequence of its cost-effective results and its ability to offer access to rehabilitation in remote areas. Telerehabilitation operates over a distance, so vulnerable patients are never exposed to unnecessary risks. Despite its low cost, the need for a professional to assess therapeutic exercises and proper corporal movements online should also be mentioned. The focus of this paper is on a telerehabilitation system for patients suffering from Parkinson’s disease in remote villages and other less accessible locations. A full-stack is presented using big data frameworks that facilitate communication between the patient and the occupational therapist, the recording of each session, and real-time skeleton identification using artificial intelligence techniques. Big data technologies are used to process the numerous videos that are generated during the course of treating simultaneous patients. Moreover, the skeleton of each patient can be estimated using deep neural networks for automated evaluation of corporal exercises, which is of immense help to the therapists in charge of the treatment programs. |
format | Online Article Text |
id | pubmed-9957301 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99573012023-02-25 A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept Ramírez-Sanz, José Miguel Garrido-Labrador, José Luis Olivares-Gil, Alicia García-Bustillo, Álvaro Arnaiz-González, Álvar Díez-Pastor, José-Francisco Jahouh, Maha González-Santos, Josefa González-Bernal, Jerónimo J. Allende-Río, Marta Valiñas-Sieiro, Florita Trejo-Gabriel-Galan, Jose M. Cubo, Esther Healthcare (Basel) Article The consolidation of telerehabilitation for the treatment of many diseases over the last decades is a consequence of its cost-effective results and its ability to offer access to rehabilitation in remote areas. Telerehabilitation operates over a distance, so vulnerable patients are never exposed to unnecessary risks. Despite its low cost, the need for a professional to assess therapeutic exercises and proper corporal movements online should also be mentioned. The focus of this paper is on a telerehabilitation system for patients suffering from Parkinson’s disease in remote villages and other less accessible locations. A full-stack is presented using big data frameworks that facilitate communication between the patient and the occupational therapist, the recording of each session, and real-time skeleton identification using artificial intelligence techniques. Big data technologies are used to process the numerous videos that are generated during the course of treating simultaneous patients. Moreover, the skeleton of each patient can be estimated using deep neural networks for automated evaluation of corporal exercises, which is of immense help to the therapists in charge of the treatment programs. MDPI 2023-02-09 /pmc/articles/PMC9957301/ /pubmed/36833041 http://dx.doi.org/10.3390/healthcare11040507 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ramírez-Sanz, José Miguel Garrido-Labrador, José Luis Olivares-Gil, Alicia García-Bustillo, Álvaro Arnaiz-González, Álvar Díez-Pastor, José-Francisco Jahouh, Maha González-Santos, Josefa González-Bernal, Jerónimo J. Allende-Río, Marta Valiñas-Sieiro, Florita Trejo-Gabriel-Galan, Jose M. Cubo, Esther A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept |
title | A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept |
title_full | A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept |
title_fullStr | A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept |
title_full_unstemmed | A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept |
title_short | A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept |
title_sort | low-cost system using a big-data deep-learning framework for assessing physical telerehabilitation: a proof-of-concept |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957301/ https://www.ncbi.nlm.nih.gov/pubmed/36833041 http://dx.doi.org/10.3390/healthcare11040507 |
work_keys_str_mv | AT ramirezsanzjosemiguel alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT garridolabradorjoseluis alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT olivaresgilalicia alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT garciabustilloalvaro alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT arnaizgonzalezalvar alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT diezpastorjosefrancisco alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT jahouhmaha alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT gonzalezsantosjosefa alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT gonzalezbernaljeronimoj alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT allenderiomarta alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT valinassieiroflorita alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT trejogabrielgalanjosem alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT cuboesther alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT ramirezsanzjosemiguel lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT garridolabradorjoseluis lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT olivaresgilalicia lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT garciabustilloalvaro lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT arnaizgonzalezalvar lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT diezpastorjosefrancisco lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT jahouhmaha lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT gonzalezsantosjosefa lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT gonzalezbernaljeronimoj lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT allenderiomarta lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT valinassieiroflorita lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT trejogabrielgalanjosem lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept AT cuboesther lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept |