Cargando…

A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept

The consolidation of telerehabilitation for the treatment of many diseases over the last decades is a consequence of its cost-effective results and its ability to offer access to rehabilitation in remote areas. Telerehabilitation operates over a distance, so vulnerable patients are never exposed to...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramírez-Sanz, José Miguel, Garrido-Labrador, José Luis, Olivares-Gil, Alicia, García-Bustillo, Álvaro, Arnaiz-González, Álvar, Díez-Pastor, José-Francisco, Jahouh, Maha, González-Santos, Josefa, González-Bernal, Jerónimo J., Allende-Río, Marta, Valiñas-Sieiro, Florita, Trejo-Gabriel-Galan, Jose M., Cubo, Esther
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957301/
https://www.ncbi.nlm.nih.gov/pubmed/36833041
http://dx.doi.org/10.3390/healthcare11040507
_version_ 1784894792212152320
author Ramírez-Sanz, José Miguel
Garrido-Labrador, José Luis
Olivares-Gil, Alicia
García-Bustillo, Álvaro
Arnaiz-González, Álvar
Díez-Pastor, José-Francisco
Jahouh, Maha
González-Santos, Josefa
González-Bernal, Jerónimo J.
Allende-Río, Marta
Valiñas-Sieiro, Florita
Trejo-Gabriel-Galan, Jose M.
Cubo, Esther
author_facet Ramírez-Sanz, José Miguel
Garrido-Labrador, José Luis
Olivares-Gil, Alicia
García-Bustillo, Álvaro
Arnaiz-González, Álvar
Díez-Pastor, José-Francisco
Jahouh, Maha
González-Santos, Josefa
González-Bernal, Jerónimo J.
Allende-Río, Marta
Valiñas-Sieiro, Florita
Trejo-Gabriel-Galan, Jose M.
Cubo, Esther
author_sort Ramírez-Sanz, José Miguel
collection PubMed
description The consolidation of telerehabilitation for the treatment of many diseases over the last decades is a consequence of its cost-effective results and its ability to offer access to rehabilitation in remote areas. Telerehabilitation operates over a distance, so vulnerable patients are never exposed to unnecessary risks. Despite its low cost, the need for a professional to assess therapeutic exercises and proper corporal movements online should also be mentioned. The focus of this paper is on a telerehabilitation system for patients suffering from Parkinson’s disease in remote villages and other less accessible locations. A full-stack is presented using big data frameworks that facilitate communication between the patient and the occupational therapist, the recording of each session, and real-time skeleton identification using artificial intelligence techniques. Big data technologies are used to process the numerous videos that are generated during the course of treating simultaneous patients. Moreover, the skeleton of each patient can be estimated using deep neural networks for automated evaluation of corporal exercises, which is of immense help to the therapists in charge of the treatment programs.
format Online
Article
Text
id pubmed-9957301
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99573012023-02-25 A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept Ramírez-Sanz, José Miguel Garrido-Labrador, José Luis Olivares-Gil, Alicia García-Bustillo, Álvaro Arnaiz-González, Álvar Díez-Pastor, José-Francisco Jahouh, Maha González-Santos, Josefa González-Bernal, Jerónimo J. Allende-Río, Marta Valiñas-Sieiro, Florita Trejo-Gabriel-Galan, Jose M. Cubo, Esther Healthcare (Basel) Article The consolidation of telerehabilitation for the treatment of many diseases over the last decades is a consequence of its cost-effective results and its ability to offer access to rehabilitation in remote areas. Telerehabilitation operates over a distance, so vulnerable patients are never exposed to unnecessary risks. Despite its low cost, the need for a professional to assess therapeutic exercises and proper corporal movements online should also be mentioned. The focus of this paper is on a telerehabilitation system for patients suffering from Parkinson’s disease in remote villages and other less accessible locations. A full-stack is presented using big data frameworks that facilitate communication between the patient and the occupational therapist, the recording of each session, and real-time skeleton identification using artificial intelligence techniques. Big data technologies are used to process the numerous videos that are generated during the course of treating simultaneous patients. Moreover, the skeleton of each patient can be estimated using deep neural networks for automated evaluation of corporal exercises, which is of immense help to the therapists in charge of the treatment programs. MDPI 2023-02-09 /pmc/articles/PMC9957301/ /pubmed/36833041 http://dx.doi.org/10.3390/healthcare11040507 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ramírez-Sanz, José Miguel
Garrido-Labrador, José Luis
Olivares-Gil, Alicia
García-Bustillo, Álvaro
Arnaiz-González, Álvar
Díez-Pastor, José-Francisco
Jahouh, Maha
González-Santos, Josefa
González-Bernal, Jerónimo J.
Allende-Río, Marta
Valiñas-Sieiro, Florita
Trejo-Gabriel-Galan, Jose M.
Cubo, Esther
A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept
title A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept
title_full A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept
title_fullStr A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept
title_full_unstemmed A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept
title_short A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept
title_sort low-cost system using a big-data deep-learning framework for assessing physical telerehabilitation: a proof-of-concept
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957301/
https://www.ncbi.nlm.nih.gov/pubmed/36833041
http://dx.doi.org/10.3390/healthcare11040507
work_keys_str_mv AT ramirezsanzjosemiguel alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT garridolabradorjoseluis alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT olivaresgilalicia alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT garciabustilloalvaro alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT arnaizgonzalezalvar alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT diezpastorjosefrancisco alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT jahouhmaha alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT gonzalezsantosjosefa alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT gonzalezbernaljeronimoj alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT allenderiomarta alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT valinassieiroflorita alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT trejogabrielgalanjosem alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT cuboesther alowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT ramirezsanzjosemiguel lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT garridolabradorjoseluis lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT olivaresgilalicia lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT garciabustilloalvaro lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT arnaizgonzalezalvar lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT diezpastorjosefrancisco lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT jahouhmaha lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT gonzalezsantosjosefa lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT gonzalezbernaljeronimoj lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT allenderiomarta lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT valinassieiroflorita lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT trejogabrielgalanjosem lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept
AT cuboesther lowcostsystemusingabigdatadeeplearningframeworkforassessingphysicaltelerehabilitationaproofofconcept