Cargando…
Estimation of Impacts of Global Factors on World Food Prices: A Comparison of Machine Learning Algorithms and Time Series Econometric Models
It is a well-felt recent phenomenal fact that global food prices have dramatically increased and attracted attention from practitioners and researchers. In line with this attraction, this study uncovers the impact of global factors on predicting food prices in an empirical comparison by using machin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957413/ https://www.ncbi.nlm.nih.gov/pubmed/36832948 http://dx.doi.org/10.3390/foods12040873 |
_version_ | 1784894820359077888 |
---|---|
author | Ulussever, Talat Ertuğrul, Hasan Murat Kılıç Depren, Serpil Kartal, Mustafa Tevfik Depren, Özer |
author_facet | Ulussever, Talat Ertuğrul, Hasan Murat Kılıç Depren, Serpil Kartal, Mustafa Tevfik Depren, Özer |
author_sort | Ulussever, Talat |
collection | PubMed |
description | It is a well-felt recent phenomenal fact that global food prices have dramatically increased and attracted attention from practitioners and researchers. In line with this attraction, this study uncovers the impact of global factors on predicting food prices in an empirical comparison by using machine learning algorithms and time series econometric models. Covering eight global explanatory variables and monthly data from January 1991 to May 2021, the results show that machine learning algorithms reveal a better performance than time series econometric models while Multi-layer Perceptron is defined as the best machine learning algorithm among alternatives. Furthermore, the one-month lagged global food prices are found to be the most significant factor on the global food prices followed by raw material prices, fertilizer prices, and oil prices, respectively. Thus, the results highlight the effects of fluctuations in the global variables on global food prices. Additionally, policy implications are discussed. |
format | Online Article Text |
id | pubmed-9957413 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99574132023-02-25 Estimation of Impacts of Global Factors on World Food Prices: A Comparison of Machine Learning Algorithms and Time Series Econometric Models Ulussever, Talat Ertuğrul, Hasan Murat Kılıç Depren, Serpil Kartal, Mustafa Tevfik Depren, Özer Foods Article It is a well-felt recent phenomenal fact that global food prices have dramatically increased and attracted attention from practitioners and researchers. In line with this attraction, this study uncovers the impact of global factors on predicting food prices in an empirical comparison by using machine learning algorithms and time series econometric models. Covering eight global explanatory variables and monthly data from January 1991 to May 2021, the results show that machine learning algorithms reveal a better performance than time series econometric models while Multi-layer Perceptron is defined as the best machine learning algorithm among alternatives. Furthermore, the one-month lagged global food prices are found to be the most significant factor on the global food prices followed by raw material prices, fertilizer prices, and oil prices, respectively. Thus, the results highlight the effects of fluctuations in the global variables on global food prices. Additionally, policy implications are discussed. MDPI 2023-02-18 /pmc/articles/PMC9957413/ /pubmed/36832948 http://dx.doi.org/10.3390/foods12040873 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ulussever, Talat Ertuğrul, Hasan Murat Kılıç Depren, Serpil Kartal, Mustafa Tevfik Depren, Özer Estimation of Impacts of Global Factors on World Food Prices: A Comparison of Machine Learning Algorithms and Time Series Econometric Models |
title | Estimation of Impacts of Global Factors on World Food Prices: A Comparison of Machine Learning Algorithms and Time Series Econometric Models |
title_full | Estimation of Impacts of Global Factors on World Food Prices: A Comparison of Machine Learning Algorithms and Time Series Econometric Models |
title_fullStr | Estimation of Impacts of Global Factors on World Food Prices: A Comparison of Machine Learning Algorithms and Time Series Econometric Models |
title_full_unstemmed | Estimation of Impacts of Global Factors on World Food Prices: A Comparison of Machine Learning Algorithms and Time Series Econometric Models |
title_short | Estimation of Impacts of Global Factors on World Food Prices: A Comparison of Machine Learning Algorithms and Time Series Econometric Models |
title_sort | estimation of impacts of global factors on world food prices: a comparison of machine learning algorithms and time series econometric models |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957413/ https://www.ncbi.nlm.nih.gov/pubmed/36832948 http://dx.doi.org/10.3390/foods12040873 |
work_keys_str_mv | AT ulussevertalat estimationofimpactsofglobalfactorsonworldfoodpricesacomparisonofmachinelearningalgorithmsandtimeserieseconometricmodels AT ertugrulhasanmurat estimationofimpactsofglobalfactorsonworldfoodpricesacomparisonofmachinelearningalgorithmsandtimeserieseconometricmodels AT kılıcdeprenserpil estimationofimpactsofglobalfactorsonworldfoodpricesacomparisonofmachinelearningalgorithmsandtimeserieseconometricmodels AT kartalmustafatevfik estimationofimpactsofglobalfactorsonworldfoodpricesacomparisonofmachinelearningalgorithmsandtimeserieseconometricmodels AT deprenozer estimationofimpactsofglobalfactorsonworldfoodpricesacomparisonofmachinelearningalgorithmsandtimeserieseconometricmodels |