Cargando…
Robust adversarial uncertainty quantification for deep learning fine-tuning
This paper proposes a deep learning model that is robust and capable of handling highly uncertain inputs. The model is divided into three phases: creating a dataset, creating a neural network based on the dataset, and retraining the neural network to handle unpredictable inputs. The model utilizes e...
Autores principales: | Ahmed, Usman, Lin, Jerry Chun-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957691/ https://www.ncbi.nlm.nih.gov/pubmed/37206086 http://dx.doi.org/10.1007/s11227-023-05087-5 |
Ejemplares similares
-
Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples
por: Tuna, Omer Faruk, et al.
Publicado: (2022) -
No Fine-Tuning, No Cry: Robust SVD for Compressing Deep Networks
por: Tukan, Murad, et al.
Publicado: (2021) -
Evaluation of Uncertainty Quantification in Deep Learning
por: Ståhl, Niclas, et al.
Publicado: (2020) -
Robustness Fine-Tuning Deep Learning Model for Cancers Diagnosis Based on Histopathology Image Analysis
por: El-Ghany, Sameh Abd, et al.
Publicado: (2023) -
Machine learning uncertainties with adversarial neural networks
por: Englert, Christoph, et al.
Publicado: (2019)