Cargando…

Robust adversarial uncertainty quantification for deep learning fine-tuning

This paper proposes a deep learning model that is robust and capable of handling highly uncertain inputs. The model is divided into three phases: creating a dataset, creating a neural network based on the dataset, and retraining the neural network to handle unpredictable inputs. The model utilizes e...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmed, Usman, Lin, Jerry Chun-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957691/
https://www.ncbi.nlm.nih.gov/pubmed/37206086
http://dx.doi.org/10.1007/s11227-023-05087-5

Ejemplares similares