Cargando…
DNAsmart: Multiple attribute ranking tool for DNA data storage systems
In an ever-growing need for data storage capacity, the Deoxyribonucleic Acid (DNA) molecule gains traction as a new storage medium with a larger capacity, higher density, and a longer lifespan over conventional storage media. To effectively use DNA for data storage, it is important to understand the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957737/ https://www.ncbi.nlm.nih.gov/pubmed/36851917 http://dx.doi.org/10.1016/j.csbj.2023.02.016 |
_version_ | 1784894894718844928 |
---|---|
author | Ezekannagha, Chisom Welzel, Marius Heider, Dominik Hattab, Georges |
author_facet | Ezekannagha, Chisom Welzel, Marius Heider, Dominik Hattab, Georges |
author_sort | Ezekannagha, Chisom |
collection | PubMed |
description | In an ever-growing need for data storage capacity, the Deoxyribonucleic Acid (DNA) molecule gains traction as a new storage medium with a larger capacity, higher density, and a longer lifespan over conventional storage media. To effectively use DNA for data storage, it is important to understand the different methods of encoding information in DNA and compare their effectiveness. This requires evaluating which decoded DNA sequences carry the most encoded information based on various attributes. However, navigating the field of coding theory requires years of experience and domain expertise. For instance, domain experts rely on various mathematical functions and attributes to score and evaluate their encodings. To enable such analytical tasks, we provide an interactive and visual analytical framework for multi-attribute ranking in DNA storage systems. Our framework follows a three-step view with user-settable parameters. It enables users to find the optimal en-/de-coding approaches by setting different weights and combining multiple attributes. We assess the validity of our work through a task-specific user study on domain experts by relying on three tasks. Results indicate that all participants completed their tasks successfully under two minutes, then rated the framework for design choices, perceived usefulness, and intuitiveness. In addition, two real-world use cases are shared and analyzed as direct applications of the proposed tool. DNAsmart enables the ranking of decoded sequences based on multiple attributes. In sum, this work unveils the evaluation of en-/de-coding approaches accessible and tractable through visualization and interactivity to solve comparison and ranking tasks. |
format | Online Article Text |
id | pubmed-9957737 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Research Network of Computational and Structural Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-99577372023-02-26 DNAsmart: Multiple attribute ranking tool for DNA data storage systems Ezekannagha, Chisom Welzel, Marius Heider, Dominik Hattab, Georges Comput Struct Biotechnol J Software/Web Server Article In an ever-growing need for data storage capacity, the Deoxyribonucleic Acid (DNA) molecule gains traction as a new storage medium with a larger capacity, higher density, and a longer lifespan over conventional storage media. To effectively use DNA for data storage, it is important to understand the different methods of encoding information in DNA and compare their effectiveness. This requires evaluating which decoded DNA sequences carry the most encoded information based on various attributes. However, navigating the field of coding theory requires years of experience and domain expertise. For instance, domain experts rely on various mathematical functions and attributes to score and evaluate their encodings. To enable such analytical tasks, we provide an interactive and visual analytical framework for multi-attribute ranking in DNA storage systems. Our framework follows a three-step view with user-settable parameters. It enables users to find the optimal en-/de-coding approaches by setting different weights and combining multiple attributes. We assess the validity of our work through a task-specific user study on domain experts by relying on three tasks. Results indicate that all participants completed their tasks successfully under two minutes, then rated the framework for design choices, perceived usefulness, and intuitiveness. In addition, two real-world use cases are shared and analyzed as direct applications of the proposed tool. DNAsmart enables the ranking of decoded sequences based on multiple attributes. In sum, this work unveils the evaluation of en-/de-coding approaches accessible and tractable through visualization and interactivity to solve comparison and ranking tasks. Research Network of Computational and Structural Biotechnology 2023-02-10 /pmc/articles/PMC9957737/ /pubmed/36851917 http://dx.doi.org/10.1016/j.csbj.2023.02.016 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Software/Web Server Article Ezekannagha, Chisom Welzel, Marius Heider, Dominik Hattab, Georges DNAsmart: Multiple attribute ranking tool for DNA data storage systems |
title | DNAsmart: Multiple attribute ranking tool for DNA data storage systems |
title_full | DNAsmart: Multiple attribute ranking tool for DNA data storage systems |
title_fullStr | DNAsmart: Multiple attribute ranking tool for DNA data storage systems |
title_full_unstemmed | DNAsmart: Multiple attribute ranking tool for DNA data storage systems |
title_short | DNAsmart: Multiple attribute ranking tool for DNA data storage systems |
title_sort | dnasmart: multiple attribute ranking tool for dna data storage systems |
topic | Software/Web Server Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957737/ https://www.ncbi.nlm.nih.gov/pubmed/36851917 http://dx.doi.org/10.1016/j.csbj.2023.02.016 |
work_keys_str_mv | AT ezekannaghachisom dnasmartmultipleattributerankingtoolfordnadatastoragesystems AT welzelmarius dnasmartmultipleattributerankingtoolfordnadatastoragesystems AT heiderdominik dnasmartmultipleattributerankingtoolfordnadatastoragesystems AT hattabgeorges dnasmartmultipleattributerankingtoolfordnadatastoragesystems |