Cargando…
Differential histone deacetylase inhibitor-induced perturbations of the global proteome landscape in the setting of high-grade serous ovarian cancer
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy in women. Its low survival rate is attributed to late detection, relapse, and drug resistance. The lack of effective second-line therapeutics remains a significant challenge. There is an opportunity to incorporate the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957826/ https://www.ncbi.nlm.nih.gov/pubmed/36193784 http://dx.doi.org/10.1002/pmic.202100372 |
_version_ | 1784894908848406528 |
---|---|
author | Duda, Jolene M. Twigg, Carly A. I. Thomas, Stefani N. |
author_facet | Duda, Jolene M. Twigg, Carly A. I. Thomas, Stefani N. |
author_sort | Duda, Jolene M. |
collection | PubMed |
description | High-grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy in women. Its low survival rate is attributed to late detection, relapse, and drug resistance. The lack of effective second-line therapeutics remains a significant challenge. There is an opportunity to incorporate the use of histone deacetylase inhibitors (HDACi) into HGSOC treatment. However, the mechanism and efficacy of HDACi in the context of BRCA-1/2 mutation status is understudied. Therefore, we set out to elucidate how HDACi perturb the proteomic landscape within HGSOC cells. In this work, we used TMT labeling followed by data-dependent acquisition LC-MS/MS to quantitatively determine differences in the global proteomic landscape across HDACi-treated CAOV3, OVCAR3, and COV318 (BRCA-1/2 wildtype) HGSOC cells. We identified significant differences in the HDACi-induced perturbations of global protein regulation across CAOV3, OVCAR3, and COV318 cells. The HDACi Vorinostat and Romidepsin were identified as being the least and most effective in inhibiting HDAC activity across the three cell lines, respectively. Our results provide a justification for the further investigation of the functional mechanisms associated with the differential efficacy of FDA-approved HDACi within the context of HGSOC. This will enhance the efficacy of targeted HGSOC therapeutic treatment modalities that include HDACi. |
format | Online Article Text |
id | pubmed-9957826 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
record_format | MEDLINE/PubMed |
spelling | pubmed-99578262023-02-25 Differential histone deacetylase inhibitor-induced perturbations of the global proteome landscape in the setting of high-grade serous ovarian cancer Duda, Jolene M. Twigg, Carly A. I. Thomas, Stefani N. Proteomics Article High-grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy in women. Its low survival rate is attributed to late detection, relapse, and drug resistance. The lack of effective second-line therapeutics remains a significant challenge. There is an opportunity to incorporate the use of histone deacetylase inhibitors (HDACi) into HGSOC treatment. However, the mechanism and efficacy of HDACi in the context of BRCA-1/2 mutation status is understudied. Therefore, we set out to elucidate how HDACi perturb the proteomic landscape within HGSOC cells. In this work, we used TMT labeling followed by data-dependent acquisition LC-MS/MS to quantitatively determine differences in the global proteomic landscape across HDACi-treated CAOV3, OVCAR3, and COV318 (BRCA-1/2 wildtype) HGSOC cells. We identified significant differences in the HDACi-induced perturbations of global protein regulation across CAOV3, OVCAR3, and COV318 cells. The HDACi Vorinostat and Romidepsin were identified as being the least and most effective in inhibiting HDAC activity across the three cell lines, respectively. Our results provide a justification for the further investigation of the functional mechanisms associated with the differential efficacy of FDA-approved HDACi within the context of HGSOC. This will enhance the efficacy of targeted HGSOC therapeutic treatment modalities that include HDACi. 2023-02 2022-10-18 /pmc/articles/PMC9957826/ /pubmed/36193784 http://dx.doi.org/10.1002/pmic.202100372 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Article Duda, Jolene M. Twigg, Carly A. I. Thomas, Stefani N. Differential histone deacetylase inhibitor-induced perturbations of the global proteome landscape in the setting of high-grade serous ovarian cancer |
title | Differential histone deacetylase inhibitor-induced perturbations of the global proteome landscape in the setting of high-grade serous ovarian cancer |
title_full | Differential histone deacetylase inhibitor-induced perturbations of the global proteome landscape in the setting of high-grade serous ovarian cancer |
title_fullStr | Differential histone deacetylase inhibitor-induced perturbations of the global proteome landscape in the setting of high-grade serous ovarian cancer |
title_full_unstemmed | Differential histone deacetylase inhibitor-induced perturbations of the global proteome landscape in the setting of high-grade serous ovarian cancer |
title_short | Differential histone deacetylase inhibitor-induced perturbations of the global proteome landscape in the setting of high-grade serous ovarian cancer |
title_sort | differential histone deacetylase inhibitor-induced perturbations of the global proteome landscape in the setting of high-grade serous ovarian cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957826/ https://www.ncbi.nlm.nih.gov/pubmed/36193784 http://dx.doi.org/10.1002/pmic.202100372 |
work_keys_str_mv | AT dudajolenem differentialhistonedeacetylaseinhibitorinducedperturbationsoftheglobalproteomelandscapeinthesettingofhighgradeserousovariancancer AT twiggcarlyai differentialhistonedeacetylaseinhibitorinducedperturbationsoftheglobalproteomelandscapeinthesettingofhighgradeserousovariancancer AT thomasstefanin differentialhistonedeacetylaseinhibitorinducedperturbationsoftheglobalproteomelandscapeinthesettingofhighgradeserousovariancancer |