Cargando…

Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes

Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzy...

Descripción completa

Detalles Bibliográficos
Autores principales: Marasco, Ramona, Fusi, Marco, Coscolín, Cristina, Barozzi, Alan, Almendral, David, Bargiela, Rafael, Nutschel, Christina Gohlke neé, Pfleger, Christopher, Dittrich, Jonas, Gohlke, Holger, Matesanz, Ruth, Sanchez-Carrillo, Sergio, Mapelli, Francesca, Chernikova, Tatyana N., Golyshin, Peter N., Ferrer, Manuel, Daffonchio, Daniele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958047/
https://www.ncbi.nlm.nih.gov/pubmed/36828822
http://dx.doi.org/10.1038/s41467-023-36610-0
_version_ 1784894941546151936
author Marasco, Ramona
Fusi, Marco
Coscolín, Cristina
Barozzi, Alan
Almendral, David
Bargiela, Rafael
Nutschel, Christina Gohlke neé
Pfleger, Christopher
Dittrich, Jonas
Gohlke, Holger
Matesanz, Ruth
Sanchez-Carrillo, Sergio
Mapelli, Francesca
Chernikova, Tatyana N.
Golyshin, Peter N.
Ferrer, Manuel
Daffonchio, Daniele
author_facet Marasco, Ramona
Fusi, Marco
Coscolín, Cristina
Barozzi, Alan
Almendral, David
Bargiela, Rafael
Nutschel, Christina Gohlke neé
Pfleger, Christopher
Dittrich, Jonas
Gohlke, Holger
Matesanz, Ruth
Sanchez-Carrillo, Sergio
Mapelli, Francesca
Chernikova, Tatyana N.
Golyshin, Peter N.
Ferrer, Manuel
Daffonchio, Daniele
author_sort Marasco, Ramona
collection PubMed
description Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme response in all cases. Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility confirms the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response.
format Online
Article
Text
id pubmed-9958047
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-99580472023-02-26 Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes Marasco, Ramona Fusi, Marco Coscolín, Cristina Barozzi, Alan Almendral, David Bargiela, Rafael Nutschel, Christina Gohlke neé Pfleger, Christopher Dittrich, Jonas Gohlke, Holger Matesanz, Ruth Sanchez-Carrillo, Sergio Mapelli, Francesca Chernikova, Tatyana N. Golyshin, Peter N. Ferrer, Manuel Daffonchio, Daniele Nat Commun Article Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme response in all cases. Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility confirms the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response. Nature Publishing Group UK 2023-02-24 /pmc/articles/PMC9958047/ /pubmed/36828822 http://dx.doi.org/10.1038/s41467-023-36610-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Marasco, Ramona
Fusi, Marco
Coscolín, Cristina
Barozzi, Alan
Almendral, David
Bargiela, Rafael
Nutschel, Christina Gohlke neé
Pfleger, Christopher
Dittrich, Jonas
Gohlke, Holger
Matesanz, Ruth
Sanchez-Carrillo, Sergio
Mapelli, Francesca
Chernikova, Tatyana N.
Golyshin, Peter N.
Ferrer, Manuel
Daffonchio, Daniele
Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes
title Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes
title_full Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes
title_fullStr Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes
title_full_unstemmed Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes
title_short Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes
title_sort enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958047/
https://www.ncbi.nlm.nih.gov/pubmed/36828822
http://dx.doi.org/10.1038/s41467-023-36610-0
work_keys_str_mv AT marascoramona enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT fusimarco enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT coscolincristina enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT barozzialan enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT almendraldavid enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT bargielarafael enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT nutschelchristinagohlkenee enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT pflegerchristopher enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT dittrichjonas enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT gohlkeholger enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT matesanzruth enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT sanchezcarrillosergio enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT mapellifrancesca enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT chernikovatatyanan enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT golyshinpetern enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT ferrermanuel enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes
AT daffonchiodaniele enzymeadaptationtohabitatthermallegacyshapesthethermalplasticityofmarinemicrobiomes