Cargando…
Automating mosquito taxonomy by compressing and enhancing a feature fused EfficientNet with knowledge distillation and a novel residual skip block
Identifying lethal vector and non-vector mosquitoes can become difficult for a layperson and sometimes even for experts, considering their visual similarities. Recently, deep learning (DL) became a solution to assist in differentiating the two mosquito types to reduce infections and enhance actions...
Autor principal: | Montalbo, Francis Jesmar P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958064/ https://www.ncbi.nlm.nih.gov/pubmed/36851980 http://dx.doi.org/10.1016/j.mex.2023.102072 |
Ejemplares similares
-
Fusing compressed deep ConvNets with a self-normalizing residual block and alpha dropout for a cost-efficient classification and diagnosis of gastrointestinal tract diseases
por: Montalbo, Francis Jesmar P.
Publicado: (2022) -
Truncating a densely connected convolutional neural network with partial layer freezing and feature fusion for diagnosing COVID-19 from chest X-rays
por: Montalbo, Francis Jesmar P.
Publicado: (2021) -
HDR-EfficientNet: A Classification of Hypertensive and Diabetic Retinopathy Using Optimize EfficientNet Architecture
por: Abbas, Qaisar, et al.
Publicado: (2023) -
Diagnosing Covid-19 chest x-rays with a lightweight truncated DenseNet with partial layer freezing and feature fusion
por: Montalbo, Francis Jesmar P.
Publicado: (2021) -
Ensemble of EfficientNets for the Diagnosis of Tuberculosis
por: Oloko-Oba, Mustapha, et al.
Publicado: (2021)