Cargando…
Using biological constraints to improve prediction in precision oncology
Many gene signatures have been developed by applying machine learning (ML) on omics profiles, however, their clinical utility is often hindered by limited interpretability and unstable performance. Here, we show the importance of embedding prior biological knowledge in the decision rules yielded by...
Autores principales: | Omar, Mohamed, Dinalankara, Wikum, Mulder, Lotte, Coady, Tendai, Zanettini, Claudio, Imada, Eddie Luidy, Younes, Laurent, Geman, Donald, Marchionni, Luigi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958363/ https://www.ncbi.nlm.nih.gov/pubmed/36852282 http://dx.doi.org/10.1016/j.isci.2023.106108 |
Ejemplares similares
-
Influenza Vaccination and COVID19 Mortality in the USA
por: Zanettini, Claudio, et al.
Publicado: (2020) -
covid19census: U.S. and Italy COVID-19 metrics and other epidemiological data
por: Zanettini, Claudio, et al.
Publicado: (2021) -
Influenza Vaccination and COVID-19 Mortality in the USA: An Ecological Study
por: Zanettini, Claudio, et al.
Publicado: (2021) -
Efficient representations of tumor diversity with paired DNA-RNA aberrations
por: Ke, Qian, et al.
Publicado: (2021) -
An R package for divergence analysis of omics data
por: Dinalankara, Wikum, et al.
Publicado: (2021)